Optimizing Multi-drug Mycobacterium tuberculosis Therapy for Rapid Sterilization and Resistance Suppression
优化结核分枝杆菌多药治疗以实现快速灭菌和耐药性抑制
基本信息
- 批准号:10567327
- 负责人:
- 金额:$ 131.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-25 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmino Acyl-tRNA SynthetasesAnimalsAntimicrobial EffectBacteriaBindingBiological AssayC3HeB/FeJ MouseCarbapenemsCatabolismCell WallCellsCholesterolCodeCombination Drug TherapyCombined Modality TherapyComplexDataDrug CombinationsDrug ExposureEquationEvaluationExcisionExperimental DesignsFiberFoundationsHumanImageIn VitroInbred BALB C MiceInfectionKineticsLesionLinkMeasuresMetabolicModelingMonobactamsMusMycobacterium tuberculosisNew AgentsOralOrganismPathologicPathologyPathway interactionsPatientsPenetrationPharmaceutical PreparationsPhasePoisonPopulationPredispositionPrimary InfectionPropertyPublishingRegimenResistanceRestSiteSpatial DistributionSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpeedSterilizationStructure of parenchyma of lungTestingTimeTissuesTuberculosisValidationWorkWritingbasebeta-Lactamscell killingcohortdata modelingdosagedrug distributionefficacy studyexperimental studyflaskshigh dimensionalityin vivoinhibitorinsightlaser capture microdissectionleucine-tRNAliquid chromatography mass spectroscopymanmass spectrometric imagingmathematical methodsmathematical modelmouse modelnonhuman primatenovelprospectivereceptor bindingresponsesuccesssupercomputertherapy durationtuberculosis treatment
项目摘要
Project Summary/Abstract
In P01 AI123036, we were able to generate an algorithm that ranked single agents for Mycobacterium
tuberculosis (MTB), identified promising 2-drug combinations and, with a completely novel mathematical
approach, identified 3-drug regimens predicted to be significantly better than 2-drug regimens. These predictions
were prospectively validated in a BALB/c model (H37Rv) and in a Non-Human Primate model of MTB (Erdman
strain). In this proposal, we will extend our previous work.
There is a large number of new MTB agents, many with novel mechanisms of action. We have 4 Specific Aims
(SA) that, when complete, will allow us to identify multi-drug combinations that will optimize rate of kill for
organisms in 3 different metabolic states and will suppress resistance emergence.
In the Hollow Fiber Infection Model [HFIM] (SA#1), we will be able to rank new agents on the bases of potency
and physicochemical properties. The HFIM provides insight into the drug’s exposure-response for kill and
resistance suppression. We identified a near optimal 3-drug regimen (PMD/MFX/BDQ). With new single agents,
we can examine substituting a new agent for an older agent AND we can expand the regimens to identify a near-
optimal 4-drug regimen. This will be particularly important for patients with high bacterial burdens.
In SA #2, we will test regimens from SA#1 in two murine models (BALB/c & C3HeB/FeJ mice). These will give
somewhat different information. Both give information regarding kill and resistance suppression. Kramnik mice
have pathology more closely resembling that in humans. We will use Matrix-Assisted Laser Desorption
Ionization-MS Imaging and Laser Capture Microdissection LCMS. This allows identification of spatial distribution
and quantification of drugs. A question regarding cure is how long to wait to sacrifice animals to document
eradication. Some agents (BDQ) have long tissue half-lives. We will document rates of ingress/egress of drugs
into the infection site, allowing determination when animal cohorts may be sacrificed to document eradication.
In SA #3, we will document mechanisms of antimicrobial effect quantitatively. We have generated a first-of-a-
kind dynamic model for PBP-binding in MTB, and will link this to rates of cell kill. We have also developed
AMP/ADP/ATP intracellular assays. These will be employed for agents like diarylquinolines (e.g. BDQ) and PMD
that act as energy poisons (for PMD, this occurs under anaerobic/non-replicative conditions. We will measure
intracellular (MTB) drug concentrations, linking them to effect alone and in combination therapy experiments.
Proposal success rests on modeling of the data. In SA #4, we have written code to extend earlier analyses,
going from 3- to 4-drug regimens. For these high dimensional models, we developed several approaches to
speed up analysis making them computationally tractable. At proposal end, we shall develop a 4-drug algorithm
allowing rapid identification of near optimal regimens that work for both susceptible and less-susceptible
organisms. The algorithm will be general. It will work well for today’s agents but also for agents as discovered.
项目摘要/摘要
在P01 AI123036中,我们能够生成一种对分枝杆菌进行单剂的算法
结核病(MTB),确定了有希望的2毒素组合,并具有完全新颖的数学
预测的3级药物疗法明显优于2级药物方案。这些预测
可能在BALB/C模型(H37RV)和MTB的非人类灵长类动物模型中进行了验证(Erdman
拉紧)。在此提案中,我们将扩展以前的工作。
有大量新的MTB代理,许多代理具有新颖的作用机理。我们有4个具体目标
(SA)完成后,将使我们能够识别多药组合,以优化杀人率
3个不同代谢状态的生物体将抑制抗药性出现。
在空心纤维感染模型[HFIM](SA#1)中,我们将能够在效力基础上对新代理进行排名
和物理特性。 HFIM提供了有关该药物的杀戮和杀戮暴露反应的见解
阻力抑制。我们确定了一种接近最佳的3毒剂治疗方案(PMD/MFX/BDQ)。有了新的单个代理商,
我们可以检查替代新代理商的新代理,我们可以扩展该方案以识别几乎 -
最佳的4级药物方案。这对于伯良细菌较高的患者尤为重要。
在SA#2中,我们将测试两种鼠模型中的SA#1(BALB/C&C3HEB/FEJ小鼠)的方案。这些会给予
有些不同的信息。两者都提供有关杀戮和抑制抑制的信息。 Kramnik小鼠
在人类中,使病理更相似。我们将使用矩阵辅助激光解吸
电离-MS成像和激光捕获显微解剖LCM。这允许识别空间分布
和药物的定量。关于治愈的问题是要等待多长时间牺牲动物来记录
根除。一些试剂(BDQ)具有长组织半衰期。我们将记录药物的入学率/出口率
进入感染部位,允许何时牺牲动物队列以记录消除。
在SA#3中,我们将定量地记录抗微生物有效的机制。我们已经产生了一个
MTB中PBP结合的类型动态模型,并将其与细胞杀伤率联系起来。我们也发展了
AMP/ADP/ATP细胞内测定。这些将被用于牙龈二元(例如BDQ)和PMD等代理商
该充当能量毒物(对于PMD,这是在厌氧/非复制条件下发生的。我们将测量
细胞内(MTB)药物浓度,将它们与单独作用和联合治疗实验联系起来。
提案成功取决于数据的建模。在SA#4中,我们已经书面代码来扩展早期分析,
从3-到4级药物方案。对于这些高维模型,我们开发了几种方法
加快分析,使它们在计算上可以处理。在提案结束时,我们将开发4级药物算法
允许快速识别易于易受感染和易感性的近乎最佳方案
有机体。该算法将是一般。它适用于当今的代理商,也适用于发现的代理商。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Louis Drusano其他文献
George Louis Drusano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Louis Drusano', 18)}}的其他基金
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9529494 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9750603 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9069215 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Rapid Identification of Optimal Combination Regimens for Pseudomonas aeruginosa
快速鉴定铜绿假单胞菌的最佳组合方案
- 批准号:
9186485 - 财政年份:2015
- 资助金额:
$ 131.43万 - 项目类别:
Rapid Identification of Optimal Combination Regimens for Pseudomonas aeruginosa
快速鉴定铜绿假单胞菌的最佳组合方案
- 批准号:
9009651 - 财政年份:2015
- 资助金额:
$ 131.43万 - 项目类别:
Combination Therapy Modeling for M tuberculosis Resistance Suppression and Kill
结核分枝杆菌耐药性抑制和杀灭的联合治疗建模
- 批准号:
8878433 - 财政年份:2014
- 资助金额:
$ 131.43万 - 项目类别:
2010 New Antimicrobial Drug Discovery and Development Gordon Research Conference
2010新型抗菌药物发现与开发戈登研究会议
- 批准号:
7906349 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
8465173 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
7989055 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
8322578 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
9925776 - 财政年份:2019
- 资助金额:
$ 131.43万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10113365 - 财政年份:2019
- 资助金额:
$ 131.43万 - 项目类别:
ePACE: an automated system for high-throughput, closed-loop control of continuous molecular evolution to enable novel therapeutics
ePACE:一种自动化系统,用于高通量、闭环控制连续分子进化,以实现新型疗法
- 批准号:
10391333 - 财政年份:2019
- 资助金额:
$ 131.43万 - 项目类别:
Advancing genetic code expansion with Rosetta computational design: improving machinery for bioorthogonal amino acids
通过 Rosetta 计算设计推进遗传密码扩展:改进生物正交氨基酸的机制
- 批准号:
9189236 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Advancing genetic code expansion with Rosetta computational design: improving machinery for bioorthogonal amino acids
通过 Rosetta 计算设计推进遗传密码扩展:改进生物正交氨基酸的机制
- 批准号:
9390387 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别: