Investigating Auditory-Motor Interactions During Rhythm Perception in a Small Animal Model
在小动物模型中研究节律感知过程中的听觉运动相互作用
基本信息
- 批准号:10564472
- 负责人:
- 金额:$ 38.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelArrhythmiaAttenuatedAuditoryAuditory areaAuditory systemBackBasal GangliaBehavioralBehavioral ParadigmBirdsCell NucleusCognitiveCommunicationComplexDiscriminationDiseaseDyslexiaElectrophysiology (science)EventExhibitsExpectancyGaitGoalsHumanImpairmentInterventionInvestigationKnowledgeLanguageLearningLesionMeasurementMeasuresMethodsModelingMotorMotor ActivityMotor CortexMotor NeuronsMusicNeuronsNeurosciencesParkinson DiseasePatternPerceptionPeriodicalsPeriodicityPersonsPlayProsencephalonRattusRecoveryResearchRoleShapesSignal TransductionSongbirdsSpeechStimulusSystemTestingTimeTrainingWorkauditory processingexpectationflexibilityimprovednervous system disorderneuralneural circuitneuroimagingneuromechanismneurotransmissionnonhuman primatenovelphonologypost strokeresponsesoundvocal learningzebra finch
项目摘要
ABSTRACT
Much of the world’s music has periodic rhythms with events repeating regularly in time, to which people clap,
move, and sing. The ability to detect and predict periodic auditory rhythms is central to the positive effects of
music-based therapies on a variety of neurological disorders, including improving phonological processing in
dyslexia, enhancing language recovery after stroke, and normalizing gait in Parkinson’s disease. Yet the neural
mechanisms underlying rhythm perception are not well understood, and progress is impeded by the lack of an
animal model that allows precise measurement and manipulation of neural circuits during rhythm perception.
Human neuroimaging studies indicate that perceiving periodic musical rhythms strongly engages the motor
planning system, including premotor cortex and basal ganglia, even when the listener is not moving or preparing
to move. Here, we test the hypothesis that the motor planning system is actively involved in learning to recognize
temporal periodicity and communicates predictions about the timing of periodic events to the auditory system.
We propose to take advantage of the well-described auditory-motor circuits in vocal learning songbirds and
leverage the mechanistic studies possible in an animal model to test these ideas. Like humans (and unlike non-
human primates), vocal learning birds have strong connections between motor planning regions and auditory
regions due to their reliance on complex, learned vocal sequences for communication. Auditory-motor circuits in
songbirds and humans have many structural and functional parallels. Recently, we showed that songbirds can
readily learn to recognize a fundamental periodic pattern (isochrony, or equal timing between events) and can
detect this pattern across a broad range of tempi. In Aim 1, we will test whether neural signals from premotor
regions play a causal role in this ability to flexibly recognize periodic rhythms. In Aim 2, by recording in auditory
cortex while reversibly silencing activity in a reciprocally connected premotor region, we will test whether
premotor signals influence auditory processing of periodic rhythms. In Aim 3, by recording activity in a premotor
region as birds learn to recognize isochrony as a global temporal pattern, we will determine whether premotor
neurons develop sensitivity to temporal regularity and exhibit activity that predicts the timing of upcoming events.
Establishing an animal model for rhythm perception will be transformative for music neuroscience, allowing
detailed investigation of the neural mechanisms underlying rhythm perception and informing rhythm-based
musical interventions to enhance function in normal and disease states.
抽象的
世界上许多音乐都有定期的节奏,活动会定期及时重复,人们会拍拍哪个,
移动,唱歌。检测和预测周期性听觉节奏的能力对于
基于音乐的各种神经系统疾病的疗法,包括改善语音处理
阅读障碍,中风后增加语言恢复,并使帕金森氏病的战斗正常化。但是神经
节奏感知的基本机制尚不清楚,并且缺乏一个进步会阻碍
动物模型允许在节奏感知期间精确测量和操纵神经回路。
人类神经影像学研究表明,感知周期性的音乐节奏强烈吸引了马达
即使听众不动或准备,计划系统,包括前皮层和基本神经节
移动。在这里,我们检验了电动机计划系统积极参与学习认识的假设
临时周期性并传达有关周期事件时间安排的预测,并向听觉系统传达。
我们建议利用声带学习歌曲鸟中描述的听觉运动电路,
利用动物模型中可能的机械研究来测试这些想法。像人类一样(与非 -
人类素数),声带学习鸟在运动规划区域与听觉之间有着牢固的联系
由于区域依赖复杂的,学到的沟通声音序列。听觉运动电路
鸣禽和人类具有许多结构和功能相似之处。最近,我们证明了鸣禽可以
容易学会识别一种基本的周期性模式(等级或事件之间的平等时机),并且可以
在各种速度范围内检测这种模式。在AIM 1中,我们将测试是否来自先前的神经信号
区域在这种能力识别周期性节奏的能力方面起着因果作用。在AIM 2中,通过录制听觉
皮层虽然在相互连接的前者区域可逆地沉默的活动,但我们将测试是否
前信号会影响周期性节奏的听觉处理。在AIM 3中,通过在Premoto中录制活动
随着鸟类学会识别同句为全球临时模式的地区,我们将确定是否会
神经元对暂时的规律性产生敏感性,并表现出预测即将发生事件的时间的活动。
建立节奏感知的动物模型将对音乐神经科学进行变革,允许
对节奏感知的神经力学的详细研究并告知基于节奏
音乐干预措施以增强正常状态和疾病状态的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mimi Hsiao Feng Kao其他文献
Mimi Hsiao Feng Kao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
TMEM30a在致心律不齐性右心室心肌病中的作用及机制研究
- 批准号:82100367
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
人参抗心律不齐活性成分及其构效关系的研究*3
- 批准号:28970070
- 批准年份:1989
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10635151 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别:
Neuroimmune axis contribution to the pathophysiology of pulmonary hypertension
神经免疫轴对肺动脉高压病理生理学的贡献
- 批准号:
10664323 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别:
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10627579 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别:
Developing natural compound emodin as a therapy for alcoholic cardiomyopathy
开发天然化合物大黄素治疗酒精性心肌病
- 批准号:
10597858 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别:
Defining the role of KCNN1 in atrial arrhythmias
定义 KCNN1 在房性心律失常中的作用
- 批准号:
10666164 - 财政年份:2023
- 资助金额:
$ 38.49万 - 项目类别: