WNK1/OSR1 axis in Hippocampal Insulin Signaling, Glucose Metabolism and Age-related Cognitive Dysfunction
WNK1/OSR1 轴在海马胰岛素信号、葡萄糖代谢和年龄相关认知功能障碍中的作用
基本信息
- 批准号:10591443
- 负责人:
- 金额:$ 13.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:3xTg-AD mouseAddressAge-associated memory impairmentAgingAlzheimer&aposs DiseaseAnimal ModelAreaBehaviorBehavioralBiochemistryBiologyBrainCellsCellular biologyChronicCognitionCognitiveComplementCore FacilityDataDementiaDeteriorationDevelopmentDiseaseDown-RegulationEnvironmentExhibitsFemaleFunctional disorderGLUT 4 proteinGlucoseGlucose TransporterGoalsHippocampusImpaired cognitionImpairmentInstitutionInsulinInsulin ResistanceInsulin Signaling PathwayLysineMediatingMediatorMemoryMentorsMetabolicMetabolic dysfunctionMetabolic syndromeMetabolismModelingMolecularMolecular BiologyMorbidity - disease rateMusNeuronsNeurosciencesOxidative StressPathogenesisPharmacologyPhasePhosphorylationPhosphotransferasesPhysiologicalPhysiologyPositioning AttributeProcessProtein KinaseProto-Oncogene Proteins c-aktResearchRisk FactorsRoleSignal PathwaySignal TransductionSynapsesTestingTrainingTransgenic OrganismsVesicleWorkage relatedaging braincareercognitive functioncognitive processglucose metabolismglucose uptakeinhibitorinsulin signalingmalememory processmortalitymouse modelneurobehavioralneuropathologyneurophysiologyneuropsychiatric symptomsexsexual dimorphismskillssmall hairpin RNAsortilintrafficking
项目摘要
Abstract
This proposal aims to provide crucial training for my long-term career plan to examine WNK1/OSR1 signaling
mechanisms contributing to neuronal metabolic alterations underlying the pathogenesis of age-related cognitive
impairment in dementia. Alzheimer’s Disease (AD) is the leading age-related cause of dementia, characterized
by progressive cognitive decline and neuropsychiatric symptoms. New research in animal models suggest that
neuronal insulin resistance disrupts insulin signaling and glucose utilization by the hippocampal neurons that
regulate cognition and contribute to pathogenesis of diseases such as AD. Yet, the exact molecular mediators
regulating insulin signaling-mediated glucose uptake by the hippocampus and their roles in cognitive processes
remain to be fully elucidated. I propose to investigate the contributions of protein kinases WNK1/OSR1 in
hippocampal insulin signaling, sortilin-mediated glucose transporter-4 (GLUT4)-dependent glucose uptake and
cognitive function. Although With-No-lysine (K) 1 (WNK1) and its substrate Oxidative Stress Responsive 1
(OSR1) are implicated in multiple diseases exhibiting cognitive and psychiatric impairments, the underlying
mechanistic details involved are not known. My unpublished preliminary data highly suggest upregulated
hippocampal WNK/OSR1 in cognitive deterioration via inhibition of insulin/AKT signaling, OSR1/sortilin-
dependent GLUT4 trafficking and glucose uptake. My data also suggest negative WNK1-AKT crosstalk and
disruption of this intricately controlled WNK1-AKT axis predisposes mice to metabolic dysfunction, which is
reversed upon inhibition of WNK1 downstream signaling. Disruption of insulin/AKT signaling also underlies
cognitive dysfunction in insulin resistant states in an age-dependent manner. These findings point to chronically
enhanced hippocampal WNK1 signaling in the pathogenesis of cognitive deterioration in insulin resistant states
and aging. I will test these hypotheses in this proposal. For this, I will acquire crucial training in insulin signaling
pathways, neuroscience, behavioral physiology, and neuropathology during the K99 phase of this proposal to
complement my previous training in metabolic pathophysiology, biochemistry, WNK1/OSR1 kinase biology, cell
and molecular biology. I will be mentored by a leader in insulin signaling- Dr. Melanie Cobb, neuro-framework
underlying metabolism and behavior- Dr. Jeffrey Zigman, molecular basis of memory- Dr. Kimberly Huber,
synaptic trafficking- Dr. Ege T. Kavalali, aging and mechanisms of AD pathogenesis- Dr. Ilya Bezprozvanny.
This proposal harnesses the commitment of the Peter O’ Donnell Jr. Brain Institute, Department of Neuroscience,
Department of Pharmacology, Mouse Behavioral Core facility, and the overall scientific training environment of
a world-class research institution at UTSW. Establishing a unique skill set in insulin and WNK1/OSR1 signaling
pathway in addition to metabolism, neuroscience, behavioral physiology, and neuro-pathophysiology, will
support my transition to an independent research academic position and will lead to the discovery of molecular
mediators underlying neuronal metabolic disruption in age-related cognitive impairment in diseases such as AD.
抽象的
该建议旨在为我的长期职业计划提供关键培训,以检查WNK1/OSR1信号传导
导致与年龄相关的认知发病机理的基础神经元代谢改变的机制
痴呆症的损害。阿尔茨海默氏病(AD)是与年龄有关的主要原因,其特征是
通过进行性认知能力下降和神经精神症状。动物模型的新研究表明
神经元胰岛素抵抗会破坏海马神经元的胰岛素信号传导和葡萄糖利用
调节认知并有助于诸如AD之类的疾病的发病机理。但是,确切的分子介质
调节海马及其在认知过程中的作用,调节胰岛素信号传导介导的葡萄糖摄取
保持充分阐明。我建议研究蛋白激酶WNK1/OSR1在
海马胰岛素信号传导,Tortilin介导的葡萄糖转运蛋白4(GLUT4)依赖性葡萄糖摄取和
认知功能。虽然没有赖氨酸(K)1(WNK1)及其底物氧化应激响应1
(OSR1)与表现出认知和精神障碍的多种疾病有关
涉及的机械细节尚不清楚。我未发表的初步数据强烈建议更新
海马WNK/OSR1通过抑制胰岛素/AKT信号传导,OSR1/Tortilin--
依赖的GLUT4运输和葡萄糖吸收。我的数据还表明WNK1-AKT串扰和负面
这种复杂控制的WNK1-AKT轴的破坏使小鼠易于代谢功能障碍,这是
抑制WNK1下游信号传导后反转。胰岛素/AKT信号的破坏也是基础
胰岛素抵抗状态的认知功能障碍以年龄的依赖方式。这些发现指向长期
增强的海马WNK1信号传导在胰岛素耐药性状态的认知确定发病机理中
和老化。我将在此提案中检验这些假设。为此,我将获得胰岛素信号传导的关键培训
该提案的K99阶段期间的途径,神经科学,行为生理和神经病理学
补充我以前在代谢病理生理学,生物化学,WNK1/OSR1激酶生物学,细胞的培训
和分子生物学。我将由胰岛素信号的领导者打电话给我 - 梅兰妮·科布博士,神经框架
潜在的新陈代谢和行为 - 记忆的分子基础Jeffrey Zigman博士 - 金伯利·胡伯博士,
突触运输 - Ege T. Kavalali博士,AD发病机理的衰老和机制-Ilya Bezprozvanny博士。
该提议利用了彼得·奥·唐纳尔小脑研究所的承诺,神经科学系
药理学系,老鼠行为核心设施和整体科学培训环境
UTSW的世界一流研究机构。在胰岛素和WNK1/OSR1信号传导中建立独特的技能
除了代谢,神经科学,行为生理和神经病理生理学外,途径还将
支持我向独立研究学术职位的过渡,并将导致发现分子
AD等疾病中与年龄相关的认知障碍中神经元代谢中的介体的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ankita Bachhawat Jaykumar其他文献
Ankita Bachhawat Jaykumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Interneuron and Network Dysfunction in a Mouse Model of Alzheimer's Disease
阿尔茨海默病小鼠模型中的中间神经元和网络功能障碍
- 批准号:
10463826 - 财政年份:2020
- 资助金额:
$ 13.23万 - 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
- 批准号:
10386859 - 财政年份:2020
- 资助金额:
$ 13.23万 - 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
- 批准号:
9974025 - 财政年份:2020
- 资助金额:
$ 13.23万 - 项目类别:
Interneuron and Network Dysfunction in a Mouse Model of Alzheimer's Disease
阿尔茨海默病小鼠模型中的中间神经元和网络功能障碍
- 批准号:
10326797 - 财政年份:2020
- 资助金额:
$ 13.23万 - 项目类别:
Phospholipase D1 Mediated Early Events Affecting Synaptic Dysfunction in Alzheimer's Disease and Related Dementia
磷脂酶 D1 介导影响阿尔茨海默病和相关痴呆症突触功能障碍的早期事件
- 批准号:
10599363 - 财政年份:2020
- 资助金额:
$ 13.23万 - 项目类别: