New quantitative approaches to interpret variant pathogenicity
解释变异致病性的新定量方法
基本信息
- 批准号:10744328
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-17 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AllelesAmericanBenignCalibrationCardiomyopathiesCategoriesClassificationClinVarClinicalClinical TreatmentCommunicationComputational BiologyComputing MethodologiesConfusionDNA sequencingDataData SetDatabasesDiagnosticDiseaseFamily memberFoundationsFutureGene FrequencyGenesGenomeGenomic medicineGenomicsGoalsGuidelinesHealth PersonnelHumanIndividualIntuitionKnowledgeLabelLaboratoriesMachine LearningMeasuresMedicalMedical GeneticsMethodsModelingMutagenesisNeural Network SimulationOperative Surgical ProceduresParentsPathogenicityPatient RecruitmentsPatientsPediatric CardiomyopathyPopulationPositioning AttributePostdoctoral FellowProbabilityPrognosisProviderPublishingRegistriesResearchStandardizationTechniquesTest ResultTimeTrainingVariantVeteransaccurate diagnosisautism spectrum disorderbiobankcase controlclinical databaseclinical implementationclinically relevantcohortcomputer sciencecostdeep neural networkexomefallsgenetic testinggenetic variantgenomic variationhuman diseaseimplementation facilitationimprovedin silicomedical schoolsmolecular pathologyneural networknext generationnext generation sequencingnon-geneticnovelprogramsprophylacticprotein structurepublic databaserare genetic disorderreproductiverisk predictionscreeningsupervised learningtooltransfer learningtranslational genomicsvariant of unknown significanceweb based interface
项目摘要
Project Summary
Insufficient knowledge and throughput to interpret pathogenicity of genetic variants identified by next
generation sequencing (NGS) is a major bottleneck for genomic medicine implementation. The American
College of Medical Genetics and Genomics and Association for Molecular Pathology (ACMG/AMP) guidelines
identify high-confidence pathogenic and likely pathogenic variants but are limited in scalability. Many variants
are classified as variants of uncertain significance by the ACMG/AMP guidelines without an indication of which
of these variants are more or less likely to be pathogenic, leading to inappropriate medical treatment. Hence, I
propose to develop standardized quantitative approaches to improve our ability to interpret genomic variations
accurately at high-throughput. In-silico tools are commonly used to assign variant pathogenicity based on
conservation, but their predictive accuracy is limited. The current methods have not been calibrated across
genes, and the same pathogenicity score does not infer the same likelihood of pathogenicity across different
genes. In this proposal, 1) I aim to recalibrate the pathogenicity scores incorporating gene-specific features
making the pathogenicity scores more comparable across genes, and improve the accuracy of pathogenicity
predictions using advanced deep neural network models and functional data from saturation mutagenesis
studies. 2) I aim to quantify the ACMG/AMP variant classification and provide probability of variant
pathogenicity for clinically relevant genes using advanced supervised learning and leveraging a large case-
control cohort. The improved computational predictions (Aim 1) will refine variant prioritization for downstream
analyses and strengthen the computational evidence used in the ACMG/AMP guidelines. The estimated
probability of variant pathogenicity based on ACMG/AMP guideline (Aim 2) will improve communication
between laboratories, health care providers and patients about genetic test results.
项目摘要
知识和吞吐量不足以解释下一步确定的遗传变异的致病性
生成测序(NGS)是基因组医学实施的主要瓶颈。美国人
医学遗传学与基因组学院与分子病理协会(ACMG/AMP)指南
识别高信心的致病性和可能的致病性变异,但可伸缩性有限。许多变体
通过ACMG/AMP指南将其归类为具有不确定意义的变体
这些变体或多或少具有致病性,导致不适当的医疗。因此,我
建议开发标准化的定量方法,以提高我们解释基因组变异的能力
准确在高通量处。塞里科工具通常用于基于
保护,但是它们的预测准确性是有限的。当前的方法尚未校准
基因和相同的致病性评分不会推断出不同的致病性可能性
基因。在此提案中,1)我的目标是重新校准结合基因特异性特征的致病性评分
使致病性得分在各个基因之间更具可比性,并提高致病性的准确性
使用先进的深神网络模型和饱和诱变的功能数据进行预测
研究。 2)我的目标是量化ACMG/AMP变体分类并提供变体的概率
使用高级监督学习和利用大病例的临床相关基因的致病性
控制队列。改进的计算预测(AIM 1)将完善下游的变体优先级
分析和加强ACMG/AMP指南中使用的计算证据。估计
基于ACMG/AMP指南(AIM 2)的变异致病性概率将改善沟通
在实验室,卫生保健提供者和患者之间有关基因检测结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiao Fan其他文献
Xiao Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiao Fan', 18)}}的其他基金
New quantitative approaches to interpret variant pathogenicity
解释变异致病性的新定量方法
- 批准号:
10301093 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
New quantitative approaches to interpret variant pathogenicity
解释变异致病性的新定量方法
- 批准号:
10490431 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Upgrading rigor and efficiency of germline cancer gene variant classification for the 2020s
提高 2020 年代种系癌症基因变异分类的严谨性和效率
- 批准号:
10577746 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Genomic Expert Curation Panels for Pediatric Malignancies
儿科恶性肿瘤基因组专家管理小组
- 批准号:
10708799 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Upgrading rigor and efficiency of germline cancer gene variant classification for the 2020s
提高 2020 年代种系癌症基因变异分类的严谨性和效率
- 批准号:
10392170 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Genomic Expert Curation Panels for Pediatric Malignancies
儿科恶性肿瘤基因组专家管理小组
- 批准号:
10413420 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别: