Personalization of graphical models using multi-omics data for subtype discovery and prognosis
使用多组学数据个性化图形模型以进行亚型发现和预后
基本信息
- 批准号:10743786
- 负责人:
- 金额:$ 39.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressApoptosisAutomobile DrivingBreast Cancer PatientCancer CenterCase/Control StudiesCharacteristicsClinicalClinical ResearchCommunitiesCopy Number PolymorphismDataData SetDefense MechanismsDevelopmentDiseaseERBB2 geneESR1 geneEpidermal Growth Factor ReceptorEstrogen Receptor alphaEventGene ExpressionGenesGeneticGoalsHospitalsIndividualInhibition of ApoptosisKnowledgeMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMedicineMethodologyMethodsMethylationMicroRNAsModelingMolecularMucinous NeoplasmMultiomic DataMutationOncogenesPancreasPapillaryPathway AnalysisPathway interactionsPatientsPrivatizationProcessPrognosisProliferatingPublic HealthResistanceResistance developmentRestSample SizeSamplingSignal TransductionSolid NeoplasmSubgroupSystemTestingTherapeutic InterventionTimeVisualizationWorkanalysis pipelineanticancer researchcancer cellcancer health disparitycancer subtypescancer therapyclinically relevantcohortepigenomegenetic signatureimprovedindividual patientinnovationmRNA Expressionmolecular subtypesmolecular targeted therapiesmultiple omicsnovel strategiesoverexpressionpancreatic cancer patientspatient orientedpatient prognosispatient stratificationpatient subsetspersonalized medicineprototypepublic databaserepositoryresponserisk predictionrisk stratificationtargeted treatmenttooltranscriptometransfer learningtumorweb app
项目摘要
SUMMARY
Recent clinical advances in cancer treatments have been attributed to targeting specific genes such as ER-𝛼,
HER2, etc. However, a significant percentage of patients do not respond to targeted therapies or develop
resistance over time. This implies that current methods for tumor characterization and therapeutic interventions
are not sufficiently accurate. In particular, current disease/patient subtyping approaches all look for differences
at the level of individual genes, ignoring pathway-level interactions that can hold key characteristics of cancer
disparities. The main goal of this project is to pioneer a new approach to disease/patient subtyping that
departs from the traditional paradigm: subtyping and characterization at the pathway level, using personalized
pathway profiles, rather than at the gene level. The hypothesis driving this work is that an emerging condition
for an individual patient can be triggered through different genes and molecular levels (e.g., transcriptome,
epigenome, etc.) but might involve the same mechanism(s). This is because, while alterations of impacted
genes could be very diverse between patients the pathways involved could be the same. The innovation of this
work is the development of a novel approach able to compute pathway profiles of individual patients by
effectively taking into account gene topology and pathway crosstalk. Fundamental to this approach is effective
integration of multi-omics and multi-cohort data to take advantage of complimentary information among
different data types and address the small size problem associated with many cohorts. The goal of this project
will be achieved through four specific aims: 1a) identify impacted pathways in individual patients, 1b) integrate
mutation, copy number variation, methylation, microRNA, and gene expression, 2) integrate multi-cohort data,
3) identify pathway signatures for each subtype, and 4) validate the proposed pathway-level subtyping
methodology and associated risk prediction by leveraging public data as well as data from two clinical studies
at UPMC Hillman Cancer Center. The significance of the proposed work lies on its potential to provide new
methods and tools for better cancer management and prognosis. In the longer term, personalized pathway
analysis will improve our understanding of disease mechanisms and resistance to treatments, enabling the
development of new treatments for personalized medicine. The methods and tools will be made available
through an open-access web application and a CRAN R package.
概括
癌症治疗的最新临床进展归因于针对特定基因,例如ER-𝛼,
但是,HER2等。但是,很大一部分患者对靶向疗法没有反应或发展
随着时间的推移阻力。这意味着当前的肿瘤表征和治疗干预方法
不够准确。特别是,当前的疾病/患者亚型方法都在寻找差异
在单个基因的水平上,忽略可以保持癌症关键特征的途径级相互作用
差异。该项目的主要目的是先驱一种新的疾病/患者亚型方法
使用个性化的
途径剖面,而不是在基因水平上。推动这项工作的假设是新兴条件
对于单个患者,可以通过不同的基因和分子水平触发(例如,转录组,
表观基因组等),但可能涉及相同的机制。这是因为,虽然受影响的改变
患者之间的基因可能非常多样化,所涉及的途径可能相同。这个创新
工作是一种新型方法的发展,能够通过
有效考虑基因拓扑和途径串扰。这种方法的基础是有效的
集成多媒体和多核心数据,以利用免费信息
不同的数据类型并解决了与许多队列相关的小尺寸问题。这个项目的目标
将通过四个特定目标来实现:1a)确定个别患者的影响途径,1B)整合
突变,拷贝数变化,甲基化,microRNA和基因表达,2)综合多核病数据,
3)确定每个亚型的途径签名,4)验证所提出的途径级亚型
方法和相关风险预测通过利用公共数据以及两项临床研究的数据
在UPMC Hillman癌症中心。拟议工作的重要性在于其提供新的潜力
改善癌症管理和预后的方法和工具。从长远来看,个性化途径
分析将提高我们对疾病机制和对治疗的抵抗力的理解,从而实现
开发个性化医学的新疗法。将提供方法和工具
通过开放访问Web应用程序和Cran R软件包。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hung N Luu其他文献
Hung N Luu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于巨噬细胞表型转变探讨BTSA1诱导衰老肌成纤维细胞凋亡及促肺纤维化消退的机制
- 批准号:82370077
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
STAB1调控Fas/FasL介导牦牛胎盘滋养层细胞凋亡及胎盘炎症性流产的作用与机制研究
- 批准号:32360836
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
ATAD3A琥珀酰化调控mtDNA损伤-泛凋亡反应轴在心梗后心衰中的作用研究
- 批准号:82300434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胸腺肽α-1介导凋亡小体RNA改善DC功能增强TNBC化疗后抗肿瘤免疫应答的机制研究
- 批准号:82303959
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LSD1通过使组蛋白H3K4位点去甲基化促进自噬参与肾小管上皮细胞凋亡和肾脏纤维化的机制研究
- 批准号:82300769
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Modulation of epigenetic programming of tissue resident macrophage lineages to impact HIV-1 infection, maintenance, and persistence.
调节组织驻留巨噬细胞谱系的表观遗传编程以影响 HIV-1 感染、维持和持久性。
- 批准号:
10675934 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Understanding and targeting fibroblast activation in influenza-triggered lung inflammation and post-viral disease
了解和靶向流感引发的肺部炎症和病毒后疾病中的成纤维细胞激活
- 批准号:
10717809 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Cholesterol-lowering drugs for treatment of pancreatitis: validation of a clinically significant novel therapeutic target and approach
用于治疗胰腺炎的降胆固醇药物:验证具有临床意义的新型治疗靶点和方法
- 批准号:
10585773 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别: