Stanford Mendelian Genomics Research Center
斯坦福孟德尔基因组学研究中心
基本信息
- 批准号:10619619
- 负责人:
- 金额:$ 283.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAccelerationBiological AssayCRISPR interferenceCRISPR screenCell LineCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsComputing MethodologiesCoupledDNA sequencingDataData SetDevelopmentDiagnosisDiagnosticDiseaseEngineeringEnrollmentEthnic OriginEvaluationFamilyFamily StudyFamily memberFosteringGene ExpressionGenesGeneticGenomic approachGenomicsIn VitroIndividualKnowledgeLaboratoriesLeadershipLiteratureMendelian disorderMethodsMultiomic DataParticipantPatientsPhasePhenotypePluripotent Stem CellsProcessRare DiseasesReporterReporter GenesReproducibilityResearchResearch PersonnelResearch SupportResourcesRiskSiteTechniquesTechnologyTestingTissuesTriageValidationVariantWorkbiobankcausal variantclinical careclinical practicecohortcomputational pipelinesdata integrationdata sharingdisease diagnosisepigenomicsexomeexome sequencingfrontierfunctional genomicsgene discoverygenetic disorder diagnosisgenetic signaturegenetic variantgenome sequencinggenomic datahigh standardimprovedin vivoinduced pluripotent stem cellinnovationinsightlipidomicsmetabolomicsmouse modelmultiple omicsnovelnovel strategiespopulation basedpublic health relevancerare genetic disorderrare variantrecruitsexstatistical learningsynergismtranscriptome sequencingtranslational genomicswhole genome
项目摘要
Rapid advances in genomics have ushered in new opportunities for Mendelian disease discovery and
diagnosis. In the last decade, exome and genome sequencing have moved from the research domain to
clinical practice. These approaches have identified new disease genes and causative variants for ~30% of
individuals suffering from a rare genetic disease. We believe that the systematic application of promising new
genomics assays coupled with innovative computational approaches will foster discovery benefitting the 70%
of symptomatic individuals without a genetic diagnosis. To this end we will apply long-read whole genome
sequencing, RNA-sequencing, epigenomics assays, metabolomics and targeted in vitro and in vivo assays to
evaluate a cohort of undiagnosed individuals suspected to have a Mendelian disorder. Our approach will be
augmented through the development and application of computational strategies enabling improved gene and
phenotype matching, integrative multi-omics analysis, and variant interpretation. This work is expected to
establish a new frontier in Mendelian disease discovery. Our Mendelian Genomics Research Center (MRGC)
team has developed key prior expertise and leadership in the use of diverse state-of-the-art experimental and
computational methods for the diagnosis and discovery of Mendelian disorders. We hypothesize that the next
phase of Mendelian genomics research will be defined by assessing and deploying the most effective ‘omics’
strategies. We propose that ongoing and iterative integration of functional genomics data into the translational
genomics toolkit will significantly increase discovery of new gene and variant disease associations beyond the
capabilities of DNA-sequencing assays alone. To facilitate this, we will comprehensively study 400 individuals
and their immediate family members (N= 900 total) with Mendelian disease where exome sequencing has not
yielded a genetic diagnosis. These represent a select cohort of hard to solve cases intractable to DNA
sequencing to date. In Aim 1, individuals recruited into the study will undergo short-read and long-read whole
genome sequencing, RNA-seq, ATAC-seq and MethylC-seq across multiple commonly used cell/tissue types
as well as metabolomics and lipidomics assays. This dataset will define a holistic view of emerging genomics
approaches for Mendelian disease diagnosis and facilitate evaluation of the relative merits of each approach.
In Aim 2, we focus on computational innovations that will improve integration of these multi-omics data in gene
and variant interpretation by integrating functional genomics outliers and advanced statistical learning
approaches. These methods will be applicable broadly across the MGRC and the world. In Aim 3, we apply
state-of-the-art targeted approaches including massively-parallel reporter assays, induced-pluripotent stem cell
functional genomics, CRISPR screens for modifier genes and engineered mouse models to detect and validate
novel causal variants and genes. Work at our site will potentiate the broad impact of the MGRC by providing a
platform for functional genomics research, validation and diagnosis in Mendelian disease.
基因组学的快速发展为孟德尔疾病的发现和研究带来了新的机遇。
在过去的十年中,外显子组和基因组测序已经从研究领域转移到诊断领域。
这些方法已经确定了大约 30% 的新疾病基因和致病变异。
我们相信,对患有罕见遗传病的个体进行系统应用是有希望的新方法。
基因组学检测与创新计算方法相结合将促进发现,使 70% 的人受益
为此,我们将应用长读全基因组。
测序、RNA 测序、表观基因组学测定、代谢组学以及靶向体外和体内测定
评估一组疑似患有孟德尔疾病的未确诊个体。我们的方法是。
通过计算策略的开发和应用来增强基因和
这项工作预计将进行表型匹配、综合多组学分析和变异解释。
建立孟德尔疾病发现的新领域。
团队在使用各种最先进的实验和技术方面已经发展了关键的先前专业知识和领导力
诊断和发现孟德尔疾病的计算方法。
孟德尔基因组学研究的阶段将通过评估和部署最有效的“组学”来定义
我们建议将功能基因组学数据持续迭代地整合到转化中。
基因组学工具包将显着增加新基因和变异疾病关联的发现
为了实现这一目标,我们将全面研究 400 个人。
及其直系亲属(总共 N = 900)患有孟德尔病,但外显子组测序尚未发现
这些代表了一组难以解决的 DNA 难以解决的病例。
迄今为止,在目标 1 中,招募参与研究的个体将接受短读长和长读长测序。
跨多种常用细胞/组织类型的基因组测序、RNA-seq、ATAC-seq 和 MmethylC-seq
以及代谢组学和脂质组学分析,该数据集将定义新兴基因组学的整体视图。
孟德尔疾病诊断方法并促进对每种方法优点的相对评估。
在目标 2 中,我们专注于计算创新,以改善这些多组学数据在基因中的整合
通过整合功能基因组学异常值和高级统计学习来解释变异
这些方法将广泛适用于 MGRC 和全世界。
最先进的靶向方法,包括大规模并行报告分析、诱导多能干细胞
功能基因组学、CRISPR 筛选修饰基因并设计小鼠模型来检测和验证
我们网站的工作将通过提供新的因果变异和基因来增强 MGRC 的广泛影响。
孟德尔病功能基因组学研究、验证和诊断平台。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
X-CAP improves pathogenicity prediction of stopgain variants.
- DOI:10.1186/s13073-022-01078-y
- 发表时间:2022-07-29
- 期刊:
- 影响因子:12.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Bernstein其他文献
Jonathan Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Bernstein', 18)}}的其他基金
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Omic and Multidimensional Spatial Atlas of Metastatic Breast Cancer
转移性乳腺癌的组学和多维空间图谱
- 批准号:
10818062 - 财政年份:2023
- 资助金额:
$ 283.8万 - 项目类别:
Fibrosis, inflammation, and osteophyte formation in post-traumatic osteoarthritis
创伤后骨关节炎中的纤维化、炎症和骨赘形成
- 批准号:
10570315 - 财政年份:2023
- 资助金额:
$ 283.8万 - 项目类别:
Deciphering molecular mechanisms controlling age-associated uterine adaptabilityto pregnancy
破译控制与年龄相关的子宫妊娠适应性的分子机制
- 批准号:
10636576 - 财政年份:2023
- 资助金额:
$ 283.8万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 283.8万 - 项目类别:
Reliable post hoc interpretations of deep learning in genomics
基因组学深度学习的可靠事后解释
- 批准号:
10638753 - 财政年份:2023
- 资助金额:
$ 283.8万 - 项目类别: