Mitochondrial transport and energy metabolism in synaptic transmission and neuronal degeneration and regeneration
突触传递和神经元变性与再生中的线粒体运输和能量代谢
基本信息
- 批准号:10915968
- 负责人:
- 金额:$ 259.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAdultAffectAgeAgingAlzheimer&aposs DiseaseAreaAxonBioenergeticsBiologyBipolar DisorderBrainBrain InjuriesBrain IschemiaBrain regionCell DeathCellsCellular Metabolic ProcessChronicCollaborationsCommunicationCorticospinal TractsCreatineDeacetylaseDeacetylationDisease ProgressionDistalEnergy MetabolismEnergy SupplyEnergy consumptionEnsureF-ActinFaceFailureFoundationsFunctional disorderGenerationsGenesGlucoseGrowthHippocampusHumanImpairmentIn VitroIndianaInduced pluripotent stem cell derived neuronsInjectionsInjuryInvestigationIschemiaKnockout MiceKnowledgeLeadLesionLinkLysosomesMaintenanceMediatingMetabolicMetabolismMitochondriaMitochondrial ProteinsModelingMolecular MotorsMotor CortexMusNatural regenerationNatureNerve DegenerationNeurobiologyNeurodegenerative DisordersNeurogliaNeuronsNeurosciencesOligodendrogliaOrganoidsOxygenPAK6 genePathologicPathologyPathway interactionsPhosphorylationPhosphotransferasesPhysiologicalPlayPositioning AttributePresynaptic TerminalsProteinsProto-Oncogene Proteins c-aktRecoveryRegulationReportingResearchRoleSLC25A4 geneSLC25A5 geneSignal PathwaySignal TransductionSirtuinsSolidSpinal CordSpinal cord injuryStressStructureSynapsesSynaptic TransmissionSynaptic plasticityTestingTherapeuticUniversitiesVesicleadult neurogenesisagedaxon injuryaxon regenerationaxonal degenerationcell motilitycell regenerationclinically relevantdeprivationexosomefrontierhealthy agingin vivo Modelinduced pluripotent stem cellischemic injuryknock-downmitochondrial dysfunctionmyosin VInervous system disorderneuron regenerationneuronal cell bodyneuronal growthneuronal survivalnewborn neuronnovelpresynapticprogramsrecruitrepairedresponserestraintspatiotemporalsynaptic depressionsyntaphilintherapeutic targettrafficking
项目摘要
Accomplishment 1. Reveal an energy signaling pathway that recruits and captures presynaptic mitochondria to sustain synaptic efficacy (Li et al., Nature Metabolism 2020; Li and Sheng, Nature Reviews Neuroscience 2022)
Presynaptic mitochondria play an essential role in maintaining effective synaptic transmission by generating ATP and sequestering presynaptic Ca2+. Given that only 33% of presynaptic terminals retain mitochondria, revealing mechanisms for recruiting and retaining presynaptic mitochondria will advance our knowledge as how neurons sustain synaptic efficacy and plasticity. In this study, we reveal that sustained activity induces presynaptic energy deficits that can be effectively recovered by recruiting mitochondria through an AMPK-PAK energy signaling pathway. Motile axonal mitochondria are captured at presynaptic terminals via an interplay between myosin VI (myo6) and SNPH. Synaptic activity activates AMPK-PAK signaling that mediates myo6 phosphorylation and drives mitochondria to presynaptic terminals where mitochondria are anchored on F-actin via SNPH. This pathway maintains presynaptic ATP supply during intensive synaptic activity. Disrupting this signaling crosstalk triggers synaptoenergetic deficits, leading to impaired synaptic efficacy and reduced recovery from synaptic depression after prolonged synaptic activity. Thus, our study reveals an energy-sensitive capture of presynaptic mitochondria, thus fine-tuning synaptic plasticity and maintaining synaptic efficacy.
Accomplishment 2. Promoting CNS regeneration after spinal cord injury (SCI) by deleting mitochondrial anchor SNPH (Han et al., Cell Metabolism 2020; Cheng et al., Neuron 2022)
Mature CNS neurons typically fail to regrowth after injury, and regeneration requires a high level of energy consumption. This is particularly problematic in SCI that acutely damages mitochondria, leading to a local energy crisis in long-projection cortico-spinal tract (CST) axons. We hypothesize that injury-induced mitochondrial damage contributes to the energetic restriction that accounts for regeneration failure. To test this, we collaborated with Dr. Xiao-Ming Xu's lab (Indiana University) by using three SCI models in Snph KO mice, in which axonal mitochondrial transport is robustly increased. We demonstrate that Snph KO mice display enhanced CST axon regeneration passing through the lesion, accelerated regrowth of monoaminergic axons across a transection gap, and increased compensatory sprouting of uninjured CST. Enhancing mitochondrial transport facilitates the delivery of healthy mitochondria from the motor cortex into the regenerating CST axons. Our energy crisis model is further tested by the finding that systemic administration of creatine, a bioenergetic compound, facilitates CST axonal regeneration. Thus, repairing energy supply by enhancing mitochondrial transport or boosting cellular energetics is a promising strategy to promote CNS axonal regeneration after injuries.
Accomplishment 3. Reprogramming an energetic AKT-PAK5 signaling axis remobilizes damaged mitochondria for replacement and thus facilitates neuron survival and regeneration after injury-ischemia (Huang et al., Current Biology 2021; Huang and Sheng, Cell Regeneration 2022)
Mitochondrial dysfunction and energy crisis are the hallmarks of ischemic injury that typically leads to the cell death within affected brain region. In mature CNS neurons, axonal mitochondrial integrity and content are reduced and ATP levels are significantly declined after oxygen and glucose deprivation, contributing to axonal degeneration. In adult brains, highly enriched SNPH expression results in the vast majority of axonal mitochondria remaining stationary after damaged. These extrinsic insults and intrinsic restrictions lead to an acute energy crisis in injured axons. In this study, we reveal a novel energetic repair signaling axis that boosts axonal energy supply by reprogramming mitochondrial trafficking and anchoring in response to acute injury-ischemic stress in mature neurons and adult brains. PAK5 is a brain mitochondrial kinase with declined expression when neurons mature. PAK5 synthesis and signaling is spatiotemporally reactivated locally within axons in response to ischemic stress and axonal injury. PAK5 signaling remobilizes and replaces damaged mitochondria via the phosphorylation switch that turns off the axonal mitochondrial anchor SNPH. Injury-ischemic insults trigger AKT growth signaling that further activates PAK5 and thus boosts local energy supply by recruiting healthy mitochondria. Thus, our study in in vitro and in vivo models reveals a new mitochondrial signaling axis that responds to injury and ischemia and provides a potential therapeutic strategy for neuronal survival and regeneration by reversing energy crisis.
Accomplishment 4. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2 (Chamberlain and Huang et al., Neuron 2021; Li and Sheng, Current Opinion of Neuroscience 2023)
Neurons require mechanisms maintaining local ATP supply in distal axons and synapses, which are particularly vulnerable to bioenergetic failure clinically relevant to axonal pathology and disease progression in neurodegenerative diseases. Thus, revealing mechanisms maintaining or boosting axonal energy supply is an emerging frontier for therapeutic investigation. Considering intricate networks in the human brain where billions of neurons and glial cells wire together, a comprehensive maintenance of axonal bioenergetics must include the contribution of glial cells. Oligodendrocytes (OLs) serve as myelinating cells surrounding axons of the CNS; this unique structure ideally positions OLs to support axonal energy metabolism. In this study, we reveal a new transcellular signaling pathway through which OL-derived NAD-dependent deacetylase sirtuin 2 (SIRT2) boosts axonal energy metabolism by deacetylation of mitochondrial proteins ANT1/ANT2. SIRT2 is undetectable in neurons but highly enriched in mature OLs and released within exosomes. Knockdown of SIRT2 in OLs or deletion of Sirt2 gene in mice abolishes the OL-axon cross talk in boosting axonal bioenergetics. Injection of OL-derived exosomes rescues axonal mitochondrial deficiency in the spinal cord of Sirt2 KO mice. This study suggests that exosome-mediated OL-to-axon delivery of SIRT2 is an efficient and robust mechanism for boosting axonal mitochondrial energetic capacity, thus providing a therapeutic target for restoring axonal energy deficits in neurological disorders.
成就1。揭示了一种能量信号通路,该通路可募集并捕获突触前线粒体以维持突触功效(Li等人,自然代谢2020; Li and Sheng,li and Sheng,自然评论神经科学2022))
突触前线粒体通过产生ATP和隔离突触前Ca2+来维持有效的突触传播中起着至关重要的作用。鉴于,只有33%的突触前末端保留了线粒体,这揭示了募集和保留突触前线粒体的机制,因为神经元如何维持突触功效和可塑性,我们的知识将促进我们的知识。在这项研究中,我们揭示了持续的活性引起突触前缺陷,可以通过通过AMPK-PAK能量信号通路募集线粒体来有效地恢复。运动轴突线粒体通过肌球蛋白VI(MyO6)和SNPH之间的相互作用在突触前终端捕获。突触活性激活了介导肌6磷酸化的AMPK-PAK信号传导,并将线粒体驱动到突触前末端,其中线粒体通过SNPH固定在F-肌动蛋白上。该途径在强化突触活动期间保持突触前ATP供应。破坏这种信号串扰的触发器触发突触词,从而导致突触功效受损,并在长时间的突触活性后从突触抑郁症中恢复。因此,我们的研究揭示了突触前线粒体的能量敏感性捕获,从而微调突触可塑性并保持突触功效。
成就2。通过删除线粒体锚SNPH促进CNS再生(SCI)(SCI)(Han等人,细胞代谢2020; Cheng等,Neuron 2022)
成熟的CNS神经元通常在受伤后无法再生,而再生需要高度的能耗。这在SCI中尤其有问题,急性损害线粒体,导致长期投射皮质脊柱(CST)轴突的局部能量危机。我们假设损伤引起的线粒体损伤有助于导致再生失败的能量限制。为了测试这一点,我们通过在SNPH KO小鼠中使用三种SCI模型与Xiao-Ming Xu的实验室(印第安纳大学)合作,其中轴突线粒体运输可强大增加。我们证明,SNPH KO小鼠表现出增强的CST轴突再生,穿过病变,跨横向间隙加速了单胺能轴突的再生,并增加了未损坏的CST的补偿性发芽。线粒体转运增强,促进了从运动皮层中健康的线粒体传递到再生的CST轴突。通过发现肌酸的系统给药促进CST轴突再生的发现进一步测试了我们的能源危机模型。因此,通过增强线粒体转运或增强细胞能量来修复能量供应是促进受伤后CNS轴突再生的有前途策略。
成就3。重新编程能量的Akt-Pak5信号轴重新拟合受损的线粒体以进行替换,从而促进了损伤 - 异常后的神经元的生存和再生(Huang等人,Curturn Biology 2021; Huang和Huang and Sheng,Cell Renenation 2022)
线粒体功能障碍和能量危机是缺血性损伤的标志,通常导致受影响的大脑区域内的细胞死亡。在成熟的中枢神经系统神经元中,轴突线粒体完整性和含量降低,ATP水平在氧气和葡萄糖剥夺后显着下降,导致轴突变性。在成年大脑中,高度富集的SNPH表达会导致绝大多数轴突线粒体在受损后保持静止。这些外部侮辱和内在限制会导致受伤的轴突发生急性能量危机。在这项研究中,我们揭示了一个新型的能量修复信号传导轴,该轴通过重新编程线粒体运输和锚定,以响应成熟神经元和成人大脑的急性损伤 - 缺血性压力来提高轴突能量。 PAK5是一种脑线粒体激酶,神经元成熟时表达下降。 PAK5的合成和信号传导是响应缺血性应力和轴突损伤的轴突中局部局部重新激活的。 PAK5信号传递通过磷酸化开关替代了损坏的线粒体,该磷酸化开关关闭了轴突线粒体锚snph。损伤 - 缺血性损伤会触发AKT增长信号,从而进一步激活PAK5,从而通过募集健康的线粒体来增强局部能量供应。因此,我们在体外和体内模型方面的研究揭示了一种新的线粒体信号轴,该信号轴对损伤和缺血反应,并通过逆转能量危机为神经元存活和再生提供了潜在的治疗策略。
成就4。少突胶质细胞通过跨细胞递送SIRT2通过脱乙酰基来增强轴突能代谢(Chamberlain和Huang等人,Neuron 2021; li and li and Sheng; li and sheng; li and sheng;
神经元需要在远端轴突和突触中维持局部ATP供应的机制,这些机制在临床上与轴突病理学和神经退行性疾病的疾病进展有关。因此,揭示维持或增强轴突能供应的机制是用于治疗研究的新兴领域。考虑到数十亿个神经元和神经胶质细胞连接在一起的复杂网络,轴突生物能量的全面维持必须包括神经胶质细胞的贡献。少突胶质细胞(OLS)充当CNS轴突周围的髓鞘细胞;这种独特的结构理想地定位了OLS以支持轴突能代谢。在这项研究中,我们揭示了一种新的跨细胞信号传导途径,通过该途径依赖性NAD依赖性脱乙酰基酶SIRTUIN 2(SIRT2)通过将线粒体蛋白ANT1/ANT2脱乙酰化来增强轴突能代谢。 SIRT2在神经元中无法检测到,但在成熟的OL中高度富集并在外泌体内释放。在OLS中敲除SIRT2或在小鼠中删除SIRT2基因的删除,从而消除了促进轴突生物能学的Ol-axon横式演讲。注射OL来源外泌体在SIRT2 KO小鼠的脊髓中挽救了轴突线粒体缺乏。这项研究表明,外泌体介导的SIRT2的OL到轴递送是一种有效且可靠的机制,用于增强轴突线粒体能量能力,从而为恢复神经疾病中轴突能量缺陷提供了治疗靶标。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism.
- DOI:10.1038/s42255-020-00289-0
- 发表时间:2020-10
- 期刊:
- 影响因子:20.8
- 作者:Li S;Xiong GJ;Huang N;Sheng ZH
- 通讯作者:Sheng ZH
Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport.
- DOI:10.1083/jcb.201302040
- 发表时间:2013-07-22
- 期刊:
- 影响因子:0
- 作者:Chen Y;Sheng ZH
- 通讯作者:Sheng ZH
Regulation of mitochondrial transport in neurons.
- DOI:10.1016/j.yexcr.2015.01.004
- 发表时间:2015-05-15
- 期刊:
- 影响因子:3.7
- 作者:Lin, Mei-Yao;Sheng, Zu-Hang
- 通讯作者:Sheng, Zu-Hang
Characterization of mitochondrial transport in neurons.
- DOI:10.1016/b978-0-12-801415-8.00005-9
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Zhou B;Lin MY;Sun T;Knight AL;Sheng ZH
- 通讯作者:Sheng ZH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zu-hang Sheng其他文献
Zu-hang Sheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zu-hang Sheng', 18)}}的其他基金
Molecular Mechanisms Of Neurotransmission And Its Modula
神经传递及其调节的分子机制
- 批准号:
6503237 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
Axonal mitochondrial mobility and its impact on synaptic transmission
轴突线粒体流动性及其对突触传递的影响
- 批准号:
7969648 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
Transport and regulation of presynaptic release machinery
突触前释放机制的运输和调节
- 批准号:
7969574 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
Regulation of synaptic transmission and autophagy-lysosomal function
突触传递和自噬溶酶体功能的调节
- 批准号:
8158185 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
Molecular mechanisms of neurotransmitter release and its
神经递质释放的分子机制及其
- 批准号:
6990672 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
MOLECULAR MECHANISMS OF NEUROTRANSMISSION AND ITS MODULATION
神经传递及其调节的分子机制
- 批准号:
6290672 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
MOLECULAR MECHANISMS OF NEUROTRANSMISSION AND ITS MODULATION
神经传递及其调节的分子机制
- 批准号:
6432932 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
Axonal transport regulates neurotransmission and autophagy-lysosomal function
轴突运输调节神经传递和自噬溶酶体功能
- 批准号:
8342217 - 财政年份:
- 资助金额:
$ 259.86万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 259.86万 - 项目类别:
Stress Granule Formation in the Antiretroviral-Mediated Dysregulation of Oligodendrocyte Maturation in HIV-HAND
HIV-HAND 中抗逆转录病毒介导的少突胶质细胞成熟失调中的应激颗粒形成
- 批准号:
10762118 - 财政年份:2023
- 资助金额:
$ 259.86万 - 项目类别:
Selective Radionuclide Delivery for Precise Bone Marrow Niche Alterations
选择性放射性核素输送以实现精确的骨髓生态位改变
- 批准号:
10727237 - 财政年份:2023
- 资助金额:
$ 259.86万 - 项目类别:
Mechanisms of Trypsin Activation in Pancreatitis
胰腺炎中胰蛋白酶激活的机制
- 批准号:
10587286 - 财政年份:2023
- 资助金额:
$ 259.86万 - 项目类别: