Process Development and Preclinical Advancement of a Novel Nanoparticle Formulation for Immune Activation
用于免疫激活的新型纳米颗粒制剂的工艺开发和临床前进展
基本信息
- 批准号:10758714
- 负责人:
- 金额:$ 119.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAgonistAntitumor ResponseBenchmarkingBiodistributionBiologicalBiopsy SpecimenBlood Chemical AnalysisBreast Cancer PatientCancer PatientCell membraneCellsCharacteristicsClinicalClinical ResearchClinical TrialsComplexContractsCytosolDataDendritic CellsDevelopmentDinucleoside PhosphatesDisseminated Malignant NeoplasmDoseDrug KineticsEncapsulatedEnsureEnzymesExclusionExcretory functionExhibitsFiltrationFormulationFundingFutureGene ActivationGenerationsHalf-LifeHaplotypesHead and Neck Squamous Cell CarcinomaHumanImmune checkpoint inhibitorImmune responseImmunotherapyIncubatedInflammationInjectionsInterferon-betaInterferonsKnowledgeLeadLegal patentLiverMacrophageMalignant NeoplasmsManganeseMediatingMetabolismMethodsMichiganMicrofluidicsModelingMusMyeloid CellsNanotechnologyNatural Killer CellsNatureNeoplasm MetastasisOryctolagus cuniculusPathway interactionsPatient-Focused OutcomesPatientsPenetrationPeriodicityPeripheral Blood Mononuclear CellPharmaceutical PreparationsPharmacodynamicsPhasePhase I Clinical TrialsPilot ProjectsPlasmaPopulationPreparationProcessProductionPublic HealthReproducibilityResearchRightsSafetySamplingSmall Business Innovation Research GrantSolid NeoplasmStimulator of Interferon GenesSystemT-LymphocyteTechnologyTechnology TransferTherapeuticTimeTissuesToxicologyUniversitiesVariantWorkanti-tumor immune responsecancer immunotherapycancer typecell typeclinic readyclinical developmentcomparative efficacydesigndrug developmentexperiencehealthy volunteerimmune activationimmune checkpoint blockadeimprovedimproved outcomelarge scale productionlead candidatemanufacturemanufacturing organizationmanufacturing scale-upmonocytenanonanoformulationnanoparticlenonhuman primatenovelnovel therapeuticspharmacokinetics and pharmacodynamicspre-clinicalpreclinical studyresponsesafety studyscale upsuccesstechnology platformtherapeutic candidatetriple-negative invasive breast carcinomatumortumor growthtumor microenvironmentuptake
项目摘要
Summary
Despite the success of immune checkpoint inhibitors for some types of cancer, the overall response rate remains
suboptimal. The majority of solid tumors exclude T-cells (termed “cold”), thus presenting a key limiting factor for
cancer immunotherapy. Activation of the cGAS-STING pathway has been demonstrated to induce anti-tumor
immune responses with impressive efficacy in preclinical studies. However, clinical stage STING agonists, based
on cyclic dinucleotides (CDNs), suffer from major limitations, including: 1) Administration via intratumoral
injection. STING agonists administered intratumorally are cleared rapidly, and intratumoral injection reduces their
utility against metastatic cancer. 2) Conventional STING agonists do not readily cross the cell membrane, failing
to maximize activation of STING located within the cytosol. 3) Cell penetration of conventional STING agonists
is not biased to the dendritic cells and macrophages which is the cell type needed to drive an anti-tumor immune
response. 4) Conventional STING agonists do not work across the human population due to variations in STING
haplotypes. Indeed, in recent phase I clinical trials, STING agonists given intratumorally exhibited only marginal
efficacy. Hence, a potent platform for systemic delivery of STING agonists is urgently needed to improve patient
outcomes. Saros Therapeutics is developing a novel nanotechnology (referred to as SNP) that addresses each
of these limitations by: 1) Incorporating manganese along with CDA, a CDN-based STING agonist, in the nano-
formulation. We have shown that Mn augments the activation of STING by CDA, lowering the dose necessary
to achieve a significant biologic (Type I IFN expression) and therapeutic (tumor growth/survival) benefit. 2)
Incorporating the Mn-CDA complex in a nanoparticle protects the CDA from degradation, extending half-life and
facilitating uptake by myeloid cells (DC, macrophages) that drives a Type I IFN response by the immune cells in
the TME. The combination of Mn+CDA incorporated into a nanoparticle formulation also improves the safety
profile of this therapy and allows administration by IV, ensuring systemic exposure and improved responses in
settings of multiple tumors and metastasis. Based on our compelling data, we will examine the potency of SNP
preparations in human patient biopsy samples. We will assess pharmacokinetic and tissue retention
characteristics of SNP in both mice and non-human primates and benchmark against other STING agonists. We
will develop microfluidic methods for large scale production of SNP in anticipation of transfer to a contract
development and manufacturing organization (CDMO). Results from these studies will accelerate the
development of our novel nanotechnology with the aim of quickly bringing immunotherapy’s benefits to more
patients with cancer.
概括
尽管免疫切除点抑制剂成功地抑制了某些类型的癌症,但总体反应率仍然存在
次优。大多数实体肿瘤不包括T细胞(称为“冷”),因此提出了关键的限制因素
癌症免疫疗法。已经证明CGAS丁字道途径的激活可以诱导抗肿瘤
临床前研究中具有令人印象深刻的效率的免疫反应。但是,基于临床阶段的刺痛激动剂
在循环二核苷酸(CDN)上,受到重大局限性,包括:1)通过肿瘤内给药
注射。肿瘤内给药的刺痛激动剂迅速清除,肿瘤内注射减少
针对转移性癌症的实用性。 2)常规的刺痛激动剂不容易越过细胞膜,失败
以最大程度地激活位于细胞质内的刺激性。 3)常规刺痛激动剂的细胞渗透
不偏向树突状细胞和巨噬细胞,这是驱动抗肿瘤免疫所需的细胞类型
回复。 4)由于刺痛的差异,传统的刺痛激动剂不起作用
单倍型。实际上,在最近的I期临床试验中,刺痛的激动剂仅在肿瘤内暴露于边缘
功效。因此,迫切需要一个潜在的刺痛激动剂的潜在平台来改善患者
结果。 Saros Therapeutics正在开发一种新颖的纳米技术(称为SNP),该学
在以下局限性的局限
公式。我们已经表明,MN增加了CDA的激活,从而降低了必要的剂量
为了获得重要的生物学(I型IFN表达)和治疗(肿瘤生长/生存)益处。 2)
将Mn-CDA复合物纳入纳米颗粒可保护CDA免受降解,延长半衰期和
促进髓样细胞(DC,巨噬细胞)的摄取,从
TME。纳米颗粒配方中的Mn+CDA的组合也提高了安全性
该疗法的特征并允许通过IV进行给药,确保系统性暴露并改善了反应
多个肿瘤和转移的设置。根据我们的引人注目的数据,我们将研究SNP的效力
人类患者活检样本中的制剂。我们将评估药代动力学和组织保留率
SNP在小鼠和非人类灵长类动物中的特征以及针对其他刺痛激动剂的基准。我们
将开发用于大规模生产SNP的微流体方法,以期转移到合同
开发与制造组织(CDMO)。这些研究的结果将加速
开发我们的新型纳米技术,目的是快速带来免疫疗法的好处
癌症患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Johnson其他文献
Richard Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 119.67万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 119.67万 - 项目类别:
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 119.67万 - 项目类别:
Cannabinoid type 2 receptors as a therapeutic target for substance use disorders
大麻素 2 型受体作为物质使用障碍的治疗靶点
- 批准号:
10606224 - 财政年份:2023
- 资助金额:
$ 119.67万 - 项目类别:
Roles for uniquely human enhancers in brain development and WNT signaling
人类独特的增强子在大脑发育和 WNT 信号传导中的作用
- 批准号:
10577092 - 财政年份:2023
- 资助金额:
$ 119.67万 - 项目类别: