Structural and Biological Effects of Ribonucleotide Insertion into Telomeres
核糖核苷酸插入端粒的结构和生物学效应
基本信息
- 批准号:10750783
- 负责人:
- 金额:$ 3.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAntibodiesApoptosisBiochemicalBiologicalBiological AssayBiophysicsBiotinCancer BiologyCell Culture TechniquesCell LineCellsCellular AssayChromosomesCircular DichroismCircular Dichroism SpectroscopyComplementCritical ThinkingDNADNA DamageDNA FoldingDNA annealingDNA biosynthesisDataDoctor of PhilosophyEnsureEnzymesExcision RepairG-QuartetsGenomeGenomic InstabilityGoalsHigher Order Chromatin StructureIn VitroLeftLengthLesionLinkMaintenanceMalignant NeoplasmsMechanicsMolecular ConformationMonitorNucleotidesOligonucleotidesPathway interactionsPhysiciansProteinsRNARNA-Directed DNA PolymeraseRepetitive SequenceResearchRibonucleotidesScientistSpectrophotometryStructureSystemTelomeraseTestingTissuesTrainingTransfectionUntranslated RNAcareerexperimental studygenome integrityhuman diseaseinnovationmutantreconstitutionrepairedsenescenceskillstelomere
项目摘要
Project Abstract
Telomeres are protective noncoding DNA caps at the ends of chromosomes that maintain genomic integrity. In
most somatic tissues telomeres will shorten with successive rounds of replication and will reach a critically short
length, at which point a cell will become senescent or undergo apoptosis. This fate can be avoided if telomeres
are maintained through expression of telomerase, a reverse transcriptase that elongates telomeres by adding
telomeric repeats. This elongation of telomeres can lead to replicative immortality, one of the hallmarks of cancer.
Another hallmark of cancer is genomic instability that arises from DNA damage. The most prevalent form of DNA
damage are ribonucleotides (rNTPs) inserted during DNA replication. Left unrepaired these rNTPs will promote
genomic instability, changes to the DNA secondary structure, and human diseases. Given the deleterious effects
of rNTPs in DNA, cells have evolved the ribonucleotide excision repair (RER) pathway to remove rNTPs. While
the impact of rNTPs in the genome is well established to have deleterious effects and promote human disease,
the impact of rNTPs at telomeres remains unknown. One essential DNA secondary structure seen at telomeres,
that can be affected by rNTPs, is a G-quadruplex (G4). Specific to this proposal, it is not known what effect
rNTPs will have on telomeric structure and integrity, or how rNTPs at telomeres are repaired to protect telomere
integrity. To investigate this, we have developed a telomerase mutant (Y717A) that inserts rNTPs at a greater
rate than wildtype (WT) telomerase. Using this mutant, I will selectively increase the rate of rNTP incorporation
only at telomeres. The overarching goal of this proposal is to determine the effect of rNTPs on telomeric G4s
and characterize the repair pathway for rNTPs in telomeres. I hypothesize that rNTP insertion into telomeres will
alter telomeric G4 dynamics and that these rNTPs are repaired through RER. To test this hypothesis, I propose
the following specific aims: 1) characterize the structural effects of rNTP insertion into telomeres and 2)
characterize rNTP repair in telomeres. For aim 1, I will use circular dichroism spectrophotometry to systematically
examine G4 formation in vitro. Using oligos of the basic telomeric sequence that will form a G4 (TTAGGG)4, I
will systematically replace the dNTPs with rNTPs to determine if rNTPs alter the key G4 structural motif in
telomeres. Additionally, using cell lines that contain either WT telomerase or a telomerase mutant which inserts
rNTPs at a greater rate than WT in conjunction with antibodies that are specific for G4s to examine if the presence
of rNTPs alters the G4 content at telomeres. For aim 2, I will characterize RER by reconstituting the RER pathway
with a substrate that has a single rNTP that will either be linear DNA or DNA folded into a G4. I will monitor the
formation of the repaired product and compare RER functionality on the different substrates. Additionally, using
proximity dependent biotin identification (BioID) I will be able to identify any additional proteins that are involved
in repair of rNTPs at telomeres. This study applies an innovative combination of in vitro biochemical assays with
cellular assays to examine the impact and repair of rNTPs at telomeres.
项目摘要
端粒是维持基因组完整性的染色体末端的保护性非编码DNA帽。在
大多数体细胞组织的端粒会因连续的复制而缩短,并且至关重要
长度,这一点,一个细胞将变成衰老或凋亡。如果端粒可以避免这种命运
通过表达端粒酶来维护,端粒酶是一种逆转录酶,通过添加来拉长端粒
端粒重复。端粒的这种伸长可能导致复制不朽,这是癌症的标志之一。
癌症的另一个标志是基因组不稳定性是由DNA损伤引起的。 DNA最普遍的形式
损伤是在DNA复制过程中插入的核糖核苷酸(RNTP)。这些RNTP会促进未修复
基因组不稳定性,DNA二级结构的变化和人类疾病。鉴于有害效果
DNA中的RNTPS的细胞已进化为核糖核苷酸切除修复(RER)途径以去除RNTP。尽管
RNTP在基因组中的影响已经良好,可以具有有害作用并促进人类疾病,
RNTP对端粒的影响仍然未知。在端粒中看到的一个必需的DNA二级结构,
RNTP的影响是G Quadruplex(G4)。特定于该提议,尚不知道什么效果
RNTPS将具有端粒结构和完整性,或如何修复端粒的RNTP来保护端粒
正直。为了调查这一点,我们开发了一个端粒酶突变体(Y717A),该突变体将RNTP插入更大
比野生型(WT)端粒酶的速率。使用此突变体,我将有选择地提高RNTP掺入速率
仅在端粒。该提案的总体目标是确定RNTP对端粒G4S的影响
并表征端粒中RNTP的修复途径。我假设RNTP插入端粒会
改变端粒G4动力学,并通过RER修复这些RNTP。为了检验这一假设,我提出了
以下具体目的:1)表征RNTP插入端粒的结构效应,而2)
表征端粒中的RNTP修复。对于AIM 1,我将使用圆形二分法分光光度法来系统地
在体外检查G4形成。使用将形成G4(ttaggg)4的基本端粒序列的寡聚物,i
将使用RNTP系统地替换DNTP,以确定RNTP是否会改变密钥G4结构图案
端粒。此外,使用包含WT端粒酶或端粒酶突变体的细胞系
RNTP的速率高于WT,与G4s特有的抗体结合使用,以检查是否存在
RNTPS的含量改变了端粒的G4含量。对于AIM 2,我将通过重新建立RER路径来表征RER
具有单个RNTP的底物,该RNTP将是线性DNA或DNA折叠成G4的底物。我将监视
形成修复的产品并比较不同底物上的RER功能。另外,使用
接近性依赖性生物素鉴定(BiOid)我将能够识别任何其他蛋白质
在修复端粒的RNTP中。这项研究采用了体外生化测定的创新组合与
细胞测定以检查端粒RNTP的影响和修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Manuel Cortez其他文献
Luis Manuel Cortez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
YTHDF3调控CXCL13表达影响黑色素瘤免疫微环境及PD-1抗体疗效的机制
- 批准号:82303866
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
AID介导抗体重链非编码区重组调控质膜BCR密度并影响记忆B细胞命运决定的研究
- 批准号:32370948
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
P29单克隆抗体的3-羟基丁酰化修饰对其稳定性影响及提升抗泡型包虫病作用的研究
- 批准号:82360402
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
心衰患者中单克隆β1-肾上腺素受体自身抗体的筛选及其对受体构象影响的研究
- 批准号:32271156
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
- 批准号:
10752046 - 财政年份:2024
- 资助金额:
$ 3.59万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
- 批准号:
10495114 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别:
Signaling and metabolic functions of nSMase-2 in hepatic steatosis and onset of insulin resistance
nSMase-2 在肝脂肪变性和胰岛素抵抗发作中的信号传导和代谢功能
- 批准号:
10735117 - 财政年份:2023
- 资助金额:
$ 3.59万 - 项目类别: