Investigating the connection between aberrant R-loop formation and genome instability
研究异常 R 环形成与基因组不稳定性之间的联系
基本信息
- 批准号:10750839
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBindingBioinformaticsBody RegionsCell modelCellsComplexDNADNA DamageDNA Double Strand BreakDNA StructureDefectDiseaseEnzymesExcisionFrequenciesFutureGene ExpressionGene Expression ProcessGenesGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGenomic approachGenomicsGoalsHybridsInstitutionIntellectual functioning disabilityKnowledgeLeadLinkMaintenanceMalignant NeoplasmsMapsMeasuresMediatingMetabolismMolecularNuclear ExportOutcomePancreatic ribonucleasePathway interactionsPatternPhenotypePolymeraseProcessPromoter RegionsRNARNA Polymerase IIRNA ProcessingResearch PersonnelResearch ProposalsResolutionRoleSingle-Stranded DNASourceStructureTestingTimeTorpedoTranscriptWorkcareergene conservationgenome-widegenomic locusin vivomRNA Precursormammalian genomemutantnervous system disordernoveloverexpressionpoly A specific exoribonucleasepost-doctoral trainingpromoterribonuclease H1skillstranscription termination
项目摘要
Project Summary
R-loops are non-B DNA structures that form co-transcriptionally upon reannealing of the nascent transcript to
the DNA template strand, resulting in an RNA:DNA hybrid and a displaced single-strand of DNA. R-loops form
dynamically over thousands of conserved genic loci in mammalian genomes under normal conditions. However,
under conditions associated with dysfunctional RNA processing, “harmful” R-loops are thought to arise and
contribute to DNA damage and genome instability phenotypes, resulting in cancer or neurological diseases.
What differentiates normal and harmful R-loops remains unclear, and how harmful R-loops lead to DNA damage
is not fully understood. Our group recently identified two classes of R-loops: Class I R-loops form during RNA
polymerase II (RNAPII) promoter-proximal pausing at an elevated frequency, while Class II R-loops occur
throughout gene bodies at moderate frequencies. Importantly, R-loop-associated genome instability phenotypes
can be relieved by overexpression of RNase H1, an enzyme that specifically degrades RNA in RNA:DNA hybrids.
The observation that RNase H1 primarily binds to promoter-proximal pause regions, and not gene body regions,
implicates Class I R-loops as major drivers of genome instability. I hypothesize that Class I R-loops become
elevated upon abnormal RNA processing, resulting in long-lasting paused RNAP polymerase II (RNAPII)
complexes, transcription-replication conflicts, and DNA double-stranded breaks (DSBs) at promoter
regions. To test this hypothesis, I will build upon a cellular model of defective RNA export by depleting THOC5,
which is known to trigger R-loop-induced genomic instability and leverage integrative and unbiased genome-
wide mapping approaches to directly measure perturbations in R-loop formation, nascent transcription, and DSB
formation over time (Aim 1). I will overexpress (OE) RNase H1 in vivo and determine if it can suppress Class I
R-loops, reduce paused RNAPII complexes, and lower DSBs (Aim 2). To further clarify the mechanism of
genome stabilization by RNase H1 OE, I will investigate the possibility that RNase H1 activity permits the
termination of paused RNAPII complexes via the XRN2 (5’-3’ exoribonuclease 2) “torpedo” pathway, thus
relieving transcription-replication conflicts (Aim 3). I expect that this work will establish Class I R-loops associated
with paused RNAPII complexes as a major class of genome-destabilizing obstacles, clarifying the identity of
harmful R-loops and their impact on genomic stability. I also expect to reveal the molecular mechanism
underlying the ability of RNase H1 to stabilize the genome, addressing largely ignored gaps in knowledge and
highlighting novel roles for XRN2 in genome maintenance at promoter regions. Overall, this will fundamentally
advance our understanding of the links between aberrant RNA processing, R-loop metabolism, and genome
maintenance in the context of disease relevant processes, such as defects in RNA export associated with
intellectual disabilities.
项目概要
R 环是非 B DNA 结构,在新生转录物重新退火至
DNA 模板链,产生 RNA:DNA 杂交体和移位的单链 DNA。
正常条件下,哺乳动物基因组中数千个保守基因位点动态变化。
在与 RNA 加工功能失调相关的条件下,“有害”R 环被认为会出现并
导致 DNA 损伤和基因组不稳定表型,从而导致癌症或神经系统疾病。
正常和有害 R 环的区别以及有害 R 环如何导致 DNA 损伤仍不清楚
我们的研究小组最近发现了两类 R 环: I 类 R 环在 RNA 过程中形成。
聚合酶 II (RNAPII) 启动子近端暂停频率升高,同时发生 II 类 R 环
重要的是,R 环相关的基因组不稳定表型的频率适中。
RNase H1 的过度表达可以缓解这种情况,RNase H1 是一种专门降解 RNA:DNA 杂交体中 RNA 的酶。
观察到 RNase H1 主要结合启动子近端暂停区域,而不是基因体区域,
表明 I 类 R 环是基因组不稳定的主要驱动因素。
RNA 加工异常时升高,导致 RNAP 聚合酶 II (RNAPII) 长期暂停
复合物、转录复制冲突和启动子处的 DNA 双链断裂 (DSB)
为了检验这个假设,我将通过耗尽 THOC5 建立一个有缺陷的 RNA 输出的细胞模型,
众所周知,它会触发 R 环诱导的基因组不稳定,并利用整合和公正的基因组-
广泛的作图方法可直接测量 R 环形成、新生转录和 DSB 中的扰动
随着时间的推移,我将在体内过度表达 (OE) RNase H1,并确定它是否可以抑制 I 类。
R 环、减少暂停的 RNAPII 复合物并降低 DSB(目标 2)。
通过 RNase H1 OE 稳定基因组,我将研究 RNase H1 活性允许
通过 XRN2(5'-3' 核糖核酸外切酶 2)“鱼雷”途径终止暂停的 RNAPII 复合物,因此
缓解转录复制冲突(目标 3)我预计这项工作将建立相关的 I 类 R 环。
将暂停的 RNAPII 复合物作为一类主要的基因组不稳定障碍,澄清了
我还希望揭示有害的 R 环及其对基因组稳定性的影响。
RNase H1 稳定基因组的能力,解决了很大程度上被忽视的知识差距和
强调 XRN2 在启动子区域基因组维护中的新作用,这将从根本上说。
增进我们对异常 RNA 加工、R 环代谢和基因组之间联系的理解
疾病相关过程中的维护,例如与疾病相关的 RNA 输出缺陷
智力障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talysa C Viera其他文献
Talysa C Viera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: