Investigating the connection between aberrant R-loop formation and genome instability
研究异常 R 环形成与基因组不稳定性之间的联系
基本信息
- 批准号:10750839
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBindingBioinformaticsBody RegionsCell modelCellsComplexDNADNA DamageDNA Double Strand BreakDNA StructureDefectDiseaseEnzymesExcisionFrequenciesFutureGene ExpressionGene Expression ProcessGenesGenetic TranscriptionGenomeGenome StabilityGenomic InstabilityGenomic approachGenomicsGoalsHybridsInstitutionIntellectual functioning disabilityKnowledgeLeadLinkMaintenanceMalignant NeoplasmsMapsMeasuresMediatingMetabolismMolecularNuclear ExportOutcomePancreatic ribonucleasePathway interactionsPatternPhenotypePolymeraseProcessPromoter RegionsRNARNA Polymerase IIRNA ProcessingResearch PersonnelResearch ProposalsResolutionRoleSingle-Stranded DNASourceStructureTestingTimeTorpedoTranscriptWorkcareergene conservationgenome-widegenomic locusin vivomRNA Precursormammalian genomemutantnervous system disordernoveloverexpressionpoly A specific exoribonucleasepost-doctoral trainingpromoterribonuclease H1skillstranscription termination
项目摘要
Project Summary
R-loops are non-B DNA structures that form co-transcriptionally upon reannealing of the nascent transcript to
the DNA template strand, resulting in an RNA:DNA hybrid and a displaced single-strand of DNA. R-loops form
dynamically over thousands of conserved genic loci in mammalian genomes under normal conditions. However,
under conditions associated with dysfunctional RNA processing, “harmful” R-loops are thought to arise and
contribute to DNA damage and genome instability phenotypes, resulting in cancer or neurological diseases.
What differentiates normal and harmful R-loops remains unclear, and how harmful R-loops lead to DNA damage
is not fully understood. Our group recently identified two classes of R-loops: Class I R-loops form during RNA
polymerase II (RNAPII) promoter-proximal pausing at an elevated frequency, while Class II R-loops occur
throughout gene bodies at moderate frequencies. Importantly, R-loop-associated genome instability phenotypes
can be relieved by overexpression of RNase H1, an enzyme that specifically degrades RNA in RNA:DNA hybrids.
The observation that RNase H1 primarily binds to promoter-proximal pause regions, and not gene body regions,
implicates Class I R-loops as major drivers of genome instability. I hypothesize that Class I R-loops become
elevated upon abnormal RNA processing, resulting in long-lasting paused RNAP polymerase II (RNAPII)
complexes, transcription-replication conflicts, and DNA double-stranded breaks (DSBs) at promoter
regions. To test this hypothesis, I will build upon a cellular model of defective RNA export by depleting THOC5,
which is known to trigger R-loop-induced genomic instability and leverage integrative and unbiased genome-
wide mapping approaches to directly measure perturbations in R-loop formation, nascent transcription, and DSB
formation over time (Aim 1). I will overexpress (OE) RNase H1 in vivo and determine if it can suppress Class I
R-loops, reduce paused RNAPII complexes, and lower DSBs (Aim 2). To further clarify the mechanism of
genome stabilization by RNase H1 OE, I will investigate the possibility that RNase H1 activity permits the
termination of paused RNAPII complexes via the XRN2 (5’-3’ exoribonuclease 2) “torpedo” pathway, thus
relieving transcription-replication conflicts (Aim 3). I expect that this work will establish Class I R-loops associated
with paused RNAPII complexes as a major class of genome-destabilizing obstacles, clarifying the identity of
harmful R-loops and their impact on genomic stability. I also expect to reveal the molecular mechanism
underlying the ability of RNase H1 to stabilize the genome, addressing largely ignored gaps in knowledge and
highlighting novel roles for XRN2 in genome maintenance at promoter regions. Overall, this will fundamentally
advance our understanding of the links between aberrant RNA processing, R-loop metabolism, and genome
maintenance in the context of disease relevant processes, such as defects in RNA export associated with
intellectual disabilities.
项目摘要
R环是非B DNA结构,它们在新生转录本重新进行后共转录形成
DNA模板链,导致RNA:DNA杂交和一个位移的DNA单链。 R环形
在正常条件下,在哺乳动物基因组中动态超过数千个保守的基因座。然而,
在与功能失调的RNA处理相关的条件下,“有害”的R环被认为是Arye和
导致DNA损伤和基因组不稳定性表型,导致癌症或神经系统疾病。
哪些区别正常和有害的R环仍不清楚,以及有害的R环如何导致DNA损伤
不完全理解。我们的小组最近确定了两类的R环:RNA期间的I类R-Loops形式
聚合酶II(RNAPII)启动子 - 抗频率以较高的频率暂停,而II类R环发生
通过中等频率的基因体。重要的是,与R环相关的基因组不稳定性表型
RNase H1的过表达可以缓解,RNase H1是一种特异性降解RNA中RNA的酶:DNA杂交。
RNASE H1主要与启动子 - 抗氧化暂停区域而不是基因体区域结合的观察结果,
暗示I类R-loops是基因组不稳定性的主要驱动因素。我假设我的r-loops成为
在异常的RNA处理后提升,导致持续暂停的RNAP聚合酶II(RNAPII)
启动子处的复合物,转录复制冲突和DNA双链断裂(DSB)
地区。为了检验这一假设,我将通过耗尽THOC5的细胞模型来建立在有缺陷的RNA导出的细胞模型上,
已知会引发R环诱导的基因组不稳定性,并利用综合和无偏基因组 -
广泛的映射方法直接测量R环形成,新生转录和DSB的扰动
随着时间的推移形成(目标1)。我将在体内过度表达(OE)RNase H1,并确定它是否可以抑制I类
R-loops,减少暂停的RNAPII复合物和下降DSB(AIM 2)。进一步阐明
RNase H1 OE的基因组稳定,我将研究RNase H1活性允许的可能性
通过XRN2(5'-3'Exoribonclelease 2)终止暂停的RNAPII复合物2)“鱼雷”途径,因此
缓解转录复制冲突(AIM 3)。我希望这项工作将建立与R-loops相关的类
暂停的RNAPII复合物是一类主要的基因组障碍障碍,使人的身份确定
有害的R环及其对基因组稳定性的影响。我还希望揭示分子机制
RNase H1稳定基因组的能力的基础,在很大程度上忽略了知识和
强调XRN2在启动子区域维持基因组维持中的新作用。总体而言,这将从根本上
促进我们对异常RNA处理,R环代谢和基因组之间的联系的理解
在疾病相关过程的背景下进行维护,例如与RNA导出的缺陷
智力残疾。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talysa C Viera其他文献
Talysa C Viera的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
溶血性曼氏杆菌羊分离株白细胞毒素(LKTA)与CD18结合域的确定及小分子抑制剂的筛选
- 批准号:31902305
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于多维度生物信息学方法对lncRNA编码跨膜小肽的预测及其多聚体机制和功能的探索
- 批准号:31900894
- 批准年份:2019
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
RNA结合蛋白介导长链非编码RNA亚细胞定位的机制研究
- 批准号:31900447
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于结构生物信息学探索“自结合肽”作为一类新型药物靶标的分子机制
- 批准号:31671361
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
药物设计新方法发展及应用
- 批准号:81230076
- 批准年份:2012
- 资助金额:280.0 万元
- 项目类别:重点项目
相似海外基金
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: