Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels

剪切应力激活合成细胞用于狭窄血管中的靶向药物释放

基本信息

  • 批准号:
    10749217
  • 负责人:
  • 金额:
    $ 4.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Narrowing of critical blood vessels due to thrombosis or embolism is one of the most prevalent heart valve diseases and the leading cause of death with aging. Their hemodynamic environment significantly changes as a result, with an increase in shear stress up to >1000 dyne/cm2 in highly constricted vessels compared to 1–70 dyne/cm2 in normal vessels. Since the increased shear stress activates platelets, the vessels become even more narrow at the stenotic site from the platelet aggregation, leading to a life-threatening stroke or long-term disability. The current treatment for obstructed vessels is to administer thrombolytic or anticoagulant drugs, but it entails high bleeding risk as active drugs are distributed throughout the body. Thus, to overcome current limitations, the goal of this proposal is to develop a synthetic cell system that only releases drugs in constricted vessels where it exhibits abnormally high shear stress. A synthetic cell is a bilayer membrane structure (e.g., vesicle) that includes various biomolecules to carry out cell-like behaviors. They are gaining attention in the drug delivery field as they can present sense-responsive behavior towards the surrounding environment when engineered with membrane proteins. To develop a shear stress-responsive synthetic cell that can be used for targeted drug delivery in stenotic blood vessels, we will use the most well-studied bacterial mechanosensitive channels, the mechanosensitive channel of large conductance (MscL). MscL is a non-selective channel that opens upon an increase in membrane tension. Our lab is the first group, to our knowledge, to develop synthetic cells using MscL and successfully demonstrate their function under hypo-osmotic condition. Recent theoretical studies have shown that the MscL reconstituted in vesicles can also be activated by shear stress when flowing through a narrowing constriction channel. Our hypothesis is that MscL incorporated in vesicles will be opened under shear stress by vesicle-shape deformation-driven membrane stretch and release the loaded drugs. We will investigate MscL activity under shear stress using constricted microfluidic channels in Aim 1. Contributing factors, such as vesicle size and lipid compositions, will be tuned to understand their effects on MscL response. In Aim 2, we will examine the potential value of the system in vitro. We will introduce thrombolytic drug-loaded synthetic cells into microfluidic channels that are constricted with experimentally induced fibrin emboli and monitor the dissolution of the clots. Successful completion of this work will result in the development of shear stress-responsive synthetic cells that can locally release thrombolytic or anticoagulant drugs in constricted or stenotic vessels. This work will further expand the application boundary of the synthetic cell field by utilizing mechanical stimulus-responsive synthetic cells as drug carriers. Additionally, successful activation of MscL under shear stress will provide a deeper understanding of MscL and demonstrates this channel's effectiveness in the drug delivery field as a drug- releasing valve in more diverse contexts.
项目摘要 由于血栓形成或栓塞引起的关键血管缩小是最普遍的心脏瓣膜之一 疾病和死亡的主要原因。他们的血液动力学环境显着变化,因为 结果,在高度狭窄的血管中,剪切应力增加到> 1000 dyne/cm2,而1-70 正常血管中的Dyne/CM2。由于增加的剪切应力会激活血小板,因此血管变得更加 血小板聚集的狭窄部位狭窄,导致危及生命的中风或长期残疾。 当前对障碍物的治疗方法是给予溶栓或抗凝药物,但需要 高出出血风险是由于活性药物分布在整个人体中。为了克服当前的局限性 该提案的目标是开发一个合成细胞系统,该系统仅在狭窄的血管中释放药物 它表现出绝对的高剪应力。合成细胞是双层膜结构(例如,囊泡) 包括各种生物分子以执行细胞样行为。他们在药物输送领域引起关注 因为他们可以在设计时对周围环境提出感性响应性的行为 膜蛋白。开发可用于靶向药物的剪切应力响应性合成细胞 在狭窄的血管中递送,我们将使用最研究的细菌机械机理敏感的通道, 大电导的机械敏感通道(MSCL)。 MSCL是一个非选择性通道,可在 膜张力的增加。据我们所知,我们的实验室是使用MSCL开发合成细胞的第一组 并成功证明了它们在低渗透条件下的功能。最近的理论研究有 表明在蔬菜中重组的MSCL也可以通过剪切应力激活 狭窄的收缩通道。我们的假设是将蔬菜中的MSCL纳入剪切 囊泡形状变形驱动的膜拉伸并释放负载药物的应力。我们将调查 在AIM 1中使用狭窄的微流体通道在剪切应力下的MSCL活性。 囊泡大小和脂质组成将被调整以了解它们对MSCL反应的影响。在AIM 2中,我们将 检查体外系统的潜在值。我们将将溶栓药物的合成细胞引入 通过实验诱导的纤维蛋白栓子限制并监测溶解的微流体通道 凝块。成功完成这项工作将导致剪切应力响应性合成的发展 可以在狭窄或狭窄血管中局部释放溶栓或抗凝药物的细胞。这项工作将 通过使用机械刺激反应性,进一步扩大合成细胞场的应用边界 合成细胞作为药物载体。此外,在剪切应力下成功激活MSCL将提供 对MSCL的更深入了解,并证明该渠道在药物输送领域的有效性作为药物 - 在更多潜水员的情况下释放阀门。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sung-Won Hwang其他文献

Sung-Won Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
  • 批准号:
    12302265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
  • 批准号:
    52308322
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
  • 批准号:
    52373051
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
  • 批准号:
    42377282
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
  • 批准号:
    52376132
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Effective local delivery of bone anabolic agent to accelerate the healing of delayed fracture union
有效局部输送骨合成代谢剂加速骨折延迟愈合
  • 批准号:
    10565241
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
Evaluating the role of multimorbidity in modulation medication effects in older adults
评估多种疾病在调节老年人药物作用中的作用
  • 批准号:
    10586349
  • 财政年份:
    2023
  • 资助金额:
    $ 4.13万
  • 项目类别:
Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
  • 批准号:
    10598712
  • 财政年份:
    2022
  • 资助金额:
    $ 4.13万
  • 项目类别:
Quantitative proteomic analysis of the aging brain after intracerebral hemorrhage
脑出血后衰老大脑的定量蛋白质组学分析
  • 批准号:
    10433541
  • 财政年份:
    2022
  • 资助金额:
    $ 4.13万
  • 项目类别:
Activated Protein C in Acute Injury
急性损伤中的活化蛋白 C
  • 批准号:
    10475352
  • 财政年份:
    2022
  • 资助金额:
    $ 4.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了