Integrating Novel Physiological Biomarkers of Feeding Intolerance in Preterm Infants
整合早产儿喂养不耐受的新型生理生物标志物
基本信息
- 批准号:10739943
- 负责人:
- 金额:$ 16.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAbdomenAddressAgeAreaBioinformaticsBiological MarkersBlindedCathetersChild HealthClinicalClinical ResearchCollectionComplexComputer ModelsCutaneousDataDedicationsDevelopmentDevelopment PlansEnteral FeedingEnvironmentFecesFosteringFoundationsFundingGastrointestinal MotilityGastrointestinal PhysiologyGoalsGrowthHealthHospitalsIleusInfantInterruptionIntestinal ObstructionIntestinal PerforationIntravenousK-Series Research Career ProgramsKnowledgeLeadLeadershipLearningLength of StayLongitudinal cohort studyMachine LearningMalnutritionMaster of ScienceMeasurementMeasuresMedical centerMentorsMesenteryMethodsMonitorMorbidity - disease rateMulticenter StudiesNear-Infrared SpectroscopyNecrotizing EnterocolitisNeonatalNeonatal Intensive CareNeonatal Intensive Care UnitsOutcomeParenteral NutritionPathologicPathologyPhysiciansPhysiologicalPregnancyPremature InfantPrincipal Component AnalysisProductivityProspective, cohort studyProteobacteriaResearchResearch PersonnelRiskSample SizeShotgunsSignal TransductionStomachSystemTaxonomyTestingTimeTrainingValidationVery Low Birth Weight InfantVolatile Fatty AcidsWorkage relatedbiomarker developmentbiomarker validationcareer developmentcell motilitycommensal bacteriacommensal microbesevidence basefeedinggastrointestinalgut microbiomegut microbiotahigh throughput analysisimproved outcomeinnovationmetabolomicsmicrobiomemicrobiotamicrobiota metabolitesmotility disordermultidisciplinarynovelnutritionoperationpatient populationperinatal medicinepredictive modelingpreventprogramsprospectiverecruitsegregationskillsskills trainingstool sampletooltranslational medicine
项目摘要
1 Eric B. Ortigoza, MD, MSCR is a Neonatal-Perinatal Medicine physician with a Master of Science in Clinical
2 Research at UT Southwestern Medical Center (UTSW). His goal is to be an independently funded investigator
3 with expertise in neonatal gastrointestinal motility. He plans to investigate novel, comprehensive objective
4 methods to differentiate developmental feeding intolerance (DFI) from pathologic feeding intolerance (PFI) with
5 the goal of limiting unnecessary feeding delays, parenteral nutrition, and improving outcomes in preterm infants.
6 In a prospective, longitudinal cohort study, preterm infants who are born <32 weeks’ gestation will undergo
7 weekly non-invasive electrogastrography (EGG), abdominal near-infrared spectroscopy (aNIRS), and stool
8 collection. Dr. Ortigoza’s specific aims are to 1) quantify postmenstrual age-dependent differences in non-
9 invasive continuous gastrointestinal monitoring in preterm infants with DFI, PFI, and no feeding intolerance (NFI),
10 and 2) measure postmenstrual age-dependent differences in the gut microbiome and microbiota-derived
11 metabolites in preterm infants with DFI, PFI, and NFI. Dr. Ortigoza’s innovative approach integrates objective
12 gastrointestinal biomarkers of gastric motility, mesenteric oxygenation, bacterial colonization, and microbiota-
13 derived metabolites to differentiate DFI from PFI. The ability to differentiate between the two conditions will
14 encourage the development of predictive models for PFI in preterm infants using bioinformatics and machine
15 learning. The ability to predict PFI will help develop evidence-based strategies aimed at preventing and/or
16 treating episodes of PFI. Dr. Ortigoza has assembled a multidisciplinary team of mentors with expertise in the
17 key areas of computational modeling of complex physiological variables (Lina Chalak, MD, MSCS), advanced
18 gut microbiome profiling (Andrew Koh, MD and Julie Mirpuri, MD), and metabolite analysis (Andrew Koh, MD).
19 UTSW and its strong clinical research operation provide the ideal environment to conduct the proposed studies
20 with the large patient population at Parkland Health and Hospital System (PHHS) and Children’s Health, a
21 dedicated Center for Translational Medicine, and a strong record of clinical research participation. Dr. Ortigoza’s
22 Career Development Plan includes a comprehensive focused strategy to address the specific key training skills
23 that will allow him to transition to independence including: 1) developing expertise in complex signal analysis of
24 EGG and aNIRS data, 2) gaining expertise in interpretation of high throughput analysis of the gut microbiome
25 and its derived metabolites, and 3) developing expertise in biomarker development/validation. In addition, he will
26 receive training to develop leadership skills that are critical to fostering a productive research team and building
27 a successful research program. Together with his scientific aims, these goals will provide the skills necessary
28 for Dr. Ortigoza to build his independent research program in neonatal gastrointestinal motility.
1 Eric B. Ortigoza,医学博士,MSCR,是一位新生儿-围产期医学医师,拥有临床理学硕士学位
2 在 UT 西南医学中心 (UTSW) 进行研究 他的目标是成为一名独立资助的研究者。
3 具有新生儿胃肠动力方面的专业知识 他计划研究新颖、全面的目标。
区分发育性喂养不耐受 (DFI) 和病理性喂养不耐受 (PFI) 的 4 种方法
5 限制不必要的喂养延迟、肠外营养和改善早产儿结局的目标。
6 在一项前瞻性纵向队列研究中,妊娠 <32 周出生的早产儿将接受
7 周无创胃电图 (EGG)、近腹部红外光谱 (aNIRS) 和粪便检查
8 Ortigoza 博士的具体目标是 1) 量化非月经后年龄依赖性差异。
9 对患有 DFI、PFI 和无喂养不耐受 (NFI) 的早产儿进行侵入性连续胃肠道监测,
10 和 2) 测量肠道微生物组和微生物群衍生的经后年龄依赖性差异
Ortigoza 博士的创新方法整合了 DFI、PFI 和 NFI 早产儿的 11 种代谢物。
12 种胃肠道生物标志物,包括胃动力、肠系膜氧合、细菌定植和微生物群
13 种衍生代谢物可区分 DFI 和 PFI 区分这两种情况的能力。
14 鼓励利用生物信息学和机器开发早产儿 PFI 预测模型
15 学习预测 PFI 的能力将有助于制定旨在预防和/或
Ortigoza 博士组建了一支具有专业知识的多学科导师团队,治疗 16 次 PFI。
复杂生理变量计算建模的 17 个关键领域(Lina Chalak,医学博士,MSCS),高级
18 肠道微生物组分析(Andrew Koh,医学博士和 Julie Mirpuri,医学博士)和代谢物分析(Andrew Koh,医学博士)。
19 UTSW 及其强大的临床研究运作为开展拟议研究提供了理想的环境
20 由于 Parkland Health and Hospital System (PHHS) 和 Children’s Health 的患者人数众多,
21 个专门的转化医学中心,以及 Ortigoza 博士参与临床研究的良好记录。
22 职业发展计划包括全面的重点战略,以解决特定的关键培训技能
23 这将使他能够过渡到独立,包括:1) 发展复杂信号分析方面的专业知识
24 EGG 和 aNIRS 数据,2) 获得解释肠道微生物组高通量分析的专业知识
25 及其衍生代谢物,以及 3) 发展生物标志物开发/验证方面的专业知识。
26 人接受培训以培养领导技能,这对于培养富有成效的研究团队和建立
27 一个成功的研究计划与他的科学目标一起,将提供必要的技能。
28 日,Ortigoza 博士建立了新生儿胃肠运动的独立研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Brum Ortigoza其他文献
Eric Brum Ortigoza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于肠道菌群介导TLR4/MyD88/NF-κB通路研究腹部推拿干预IBS肠道机械屏障的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Natural History of Overall Mortality with Diagnosed Symptomatic Gallstone Disease in the United States: A Sequential Mixed-methods Study Evaluating Emergency, Non-emergency, and No Cholecystectomy
美国诊断有症状胆结石病的总体死亡率的自然史:一项评估紧急、非紧急和不进行胆囊切除术的序贯混合方法研究
- 批准号:
10664339 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
A Novel Assay to Improve Translation in Analgesic Drug Development
改善镇痛药物开发转化的新方法
- 批准号:
10726834 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Ovarian Function Among Samoan Women with Obesity
萨摩亚肥胖女性的卵巢功能
- 批准号:
10605790 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 16.74万 - 项目类别: