Neural Recording and Simulation Tools to Address the Mesoscale Gap
解决中尺度差距的神经记录和模拟工具
基本信息
- 批准号:10739544
- 负责人:
- 金额:$ 448.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAerosolsAmplifiersAreaAuditoryAuditory areaAuditory systemBiological ModelsBiophysicsBrainChronicClassificationClinicalCochleaCommunitiesComplexComprehensionComputer softwareDataDevice or Instrument DevelopmentDevicesDiagnosisDiagnosticDiscriminationDura MaterElasticityElastomersElectrodesElectroencephalographyElectronicsElectrophysiology (science)ElementsEpilepsyEvaluationFilmFrequenciesGenerationsHistologicHumanInferior ColliculusInstitutionLateralLeadLengthLocationLongevityMacacaMapsMeasurementMeasuresMethodsMicroelectrodesMiniaturizationModelingModificationMotorNeurobiologyNeurosciencesNoiseOperative Surgical ProceduresOutputPathologyPerformancePrintingProcessPublishingRattusResolutionRiskRodentSignal TransductionSiteSoftware ToolsSourceSpeechSystemTechnologyTestingThalamic structureThinnessTimeUtahValidationWorkauditory stimulusbiophysical modelbrain computer interfacedensitydesignelastomericexpectationexperimental studyflexibilityimprovedin vivoinsightmanufacturemicroelectronicsmillimetermultidisciplinaryneuralnext generationnovelnovel strategiesopen sourceresponsesensorsensory systemsimulationsoftware developmentsource localizationtoolvirtualvoltage
项目摘要
Abstract
We have designed a novel approach to perform multi-scale recordings in the brain across regions and depths. This tool, referred to as DISC for its directional and scalable sensing, is an array of microelectrodes surrounding the lead body and designed to maximize the phenomenon of “substrate shielding”. Electro-quasistatic modeling and in vivo data demonstrate significant improvements over microwires and ring electrodes, including (i) signal amplitude, (ii) signal-to-noise ratio, and (iii) source separation in classification testing. DISC measures local field potentials in stereo and with significant amplification, which is especially powerful in isolating sources at the mesoscale. Several critical challenges for the propagation of this technology are the inherent limitations in photolithographic manufacturing methods, and our continuing inability to relate the local field potential with detailed circuit function. To address these two challenges, we will develop a revolutionary manufacturing method for microelectronics based on aerosol jet printing (Aim 1) and develop a biophysical model that can predict specific voltage outputs (Aim 2). The amplification and directionality of DISC when combined with biophysical forward models will be a unique and power tool to improve the utility of the local field potential. The validation of the hardware and software tools will be performed using chronic rat and macaque auditory experiments. DISC will demonstrate both laminar and network-wide recordings in the auditory core during audio stimulation. We will analyze the ability of DISC recordings to discriminate the best frequency circuits and contrast this with a variety of virtual macroelectrodes, including the ring electrode currently used in sEEG. We believe this multidisciplinary work will culminate in 3 critical tools being made available to the neuroscience and clinical communities: (1) a stereotactically-guided depth array capable of chronic, low-noise wideband recordings that excel at high-resolution mesoscale information; (2) a detailed, multi-scale forward model (NetPyNE/Brainstorm pipeline) that produces simulated voltage readings specific to several device types including DISC; and (3) a high-resolution inverse model, which will extend source localization to mesoscale voltage inputs. The software development will be open-source.
抽象的
我们设计了一种新颖的方法,可以在跨区域和深度之间在大脑中执行多尺度记录。该工具被称为圆盘的方向性和可扩展传感器,是围绕铅体的一系列微电极,旨在最大化“底物屏蔽”现象。电质量建模和体内数据表现出对微小电极和环电极的显着改善,包括(i)信号放大器,(ii)信噪比和(iii)分类测试中的源分离。光盘测量立体声中的局部场电位,并具有显着的扩增,这在隔离中尺度的源中特别有力。该技术传播的几个关键挑战是光刻制造方法的继承局限性,以及我们继续无法将本地现场潜力与详细的电路功能联系起来。为了应对这两个挑战,我们将基于气溶胶喷射打印(AIM 1)开发一种革命性的微电子制造方法,并开发一个可以预测特定电压输出的生物物理模型(AIM 2)。与生物物理前向模型相结合时,光盘的扩增和方向性将是提高局部田间潜力效用的独特和电源工具。硬件和软件工具的验证将使用慢性大鼠和猕猴的听觉实验执行。光盘将在音频仿真期间在听觉核心中演示层流和网络范围的记录。我们将分析光盘记录区分最佳频率电路的能力,并将其与各种虚拟大型电极(包括当前在SeeG中使用的环电极)进行对比。我们认为,这项多学科工作将达到三种关键工具,可为神经科学和临床社区提供:(1)立体定位引导的深度阵列,能够具有慢性,低噪声宽带记录,可在高分辨率中尺度信息信息上表现出色; (2)一种详细的,多尺度的远期模型(Netpyne/头脑风暴管道),该模型会产生针对多种设备类型(包括光盘)的模拟电压读数; (3)高分辨率逆模型,该模型将将源定位扩展到中尺度电压输入。软件开发将是开源的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Compton Mosher其他文献
John Compton Mosher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Compton Mosher', 18)}}的其他基金
Device-Independent Acquisition and Real Time Spatiotemporal Analysis of Clinical Electrophysiology Data
临床电生理学数据的独立于设备的采集和实时时空分析
- 批准号:
10225499 - 财政年份:2017
- 资助金额:
$ 448.68万 - 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
- 批准号:
7139534 - 财政年份:2006
- 资助金额:
$ 448.68万 - 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
- 批准号:
7285550 - 财政年份:2006
- 资助金额:
$ 448.68万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
RECIPROCAL FEEDBACK MECHANISMS OF GLIOBLASTOMA AND NEURONAL NETWORK HYPEREXCITABILITY
胶质母细胞瘤与神经网络过度兴奋的交互反馈机制
- 批准号:
10629813 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 448.68万 - 项目类别: