Cell Cycle Regulation of Cell Fate and Morphogenesis in D. rerio
斑马鱼细胞命运和形态发生的细胞周期调控
基本信息
- 批准号:10627845
- 负责人:
- 金额:$ 3.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-19 至 2025-05-18
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAnteriorBehaviorBiosensorBrachyury proteinCDK2 geneCDK4 geneCDKN1C geneCell CycleCell Cycle ArrestCell Cycle InhibitionCell Cycle RegulationCell Fate ControlCell TransplantationCellsComplexConfocal MicroscopyCuesCyclin-Dependent Kinase InhibitorCyclin-Dependent KinasesDataDevelopmentDiseaseDisseminated Malignant NeoplasmEmbryoExclusionFloorG1 ArrestGene ExpressionGenesGoalsInvadedKnowledgeMalignant NeoplasmsMediatingModelingMorphogenesisMovementOrganismOutcomePhasePlayPopulationProcessProliferatingPublishingRegulationResearchRoleSignal PathwaySignal TransductionSpecific qualifier valueStructureTestingTissuesTranscriptional RegulationTransgenic OrganismsUp-RegulationWorkZebrafishcancer cellcell behaviorcell fate specificationcell motilitycellular imagingconvergent extensiondevelopmental diseasegene regulatory networkin vivoin vivo Modelinsightintercalationknock-downmigrationmutantnew therapeutic targetnotch proteinnotochordnotochord developmentnovelnovel therapeuticsoverexpressionpreventprogenitorsingle-cell RNA sequencingstem cellstranscription factorzebrafish development
项目摘要
PROJECT SUMMARY / ABSTRACT
Complex morphogenetic processes are required for proper organismal development. These morphogenetic
processes require various combinations of cell migration, proliferation, invasion, and fate acquisition. The
coordination of these behaviors must be tightly regulated, as dysregulation of these processes can lead to
developmental disorders and disease states such as cancer. To study the regulation of complex
morphogenetic process we turn to zebrafish development. In zebrafish, morphogenesis of midline tissue
structures such as the notochord, floor plate, and hypochord drive axis elongation of the developing embryo.
These tissues are derived from a population of progenitors residing in the tailbud known as midline progenitor
cells (MPCs). MPCs undergo a morphogenetic process called convergent extension (CE) to give rise to the
notochord. During CE, adjacent MPCs migrate and intercalate between one another to form the notochord.
The decision of MPCs to adopt a notochord, floor plate, or hypochord fate is based on local signaling cues
such as Wnt and Notch. While these signaling pathways have been shown to regulate morphogenetic cell
behaviors, there is growing evidence to suggest that the cell cycle can also modulate cell behaviors. However,
the mechanisms by which cell cycle state dictates cell behavior and cell fate during tailbud morphogenesis
remain unclear. I will address this gap in knowledge and elucidate the relationship between cell cycle state and
cell fate/morphogenesis during development using CE of the zebrafish notochord during tailbud
morphogenesis as a model. Published data from my lab and others show notochord progenitor cells are in G1,
while floor plate and hypochord progenitors can be found in all phases of the cell cycle. Furthermore, these
notochord progenitors undergo CE in G1 and reenter the cell cycle after joining the notochord, suggesting that
G1 arrest facilitates this morphogenetic process and notochord fate acquisition. In Aim 1 of this project, I will
perturb G1 arrest specifically in the MPCs and determine the effects on CE. Using transgenic zebrafish lines,
including a CDK activity biosensor to establish cell cycle state, and spinning disk confocal microscopy, I will
time-lapse image these cell cycle perturbed embryos and quantify CE and fate acquisition. In Aim 2, I will
explore the gene regulatory network (GRN) responsible for inducing G1 arrest in the MPCs, with a focus on the
T-box transcription factor Brachyury (tbxta). Published data show tbxta to be indispensable to notochord
formation and moreover, preliminary data from our lab show knockdown of tbxta drives notochord progenitors
to cycle and be excluded from the notochord, adopting a floor plate or hypochord fate. The combination of a
CDK activity biosensor, cell cycle perturbation constructs, midline directed cell transplantation, and spinning
disk confocal microscopy will allow me to test my hypotheses thoroughly and rigorously.
项目摘要 /摘要
适当的生物发育需要复杂的形态发生过程。这些形态发生
过程需要各种细胞迁移,增殖,入侵和命运的组合。这
这些行为的协调必须严格调节,因为这些过程的失调可能导致
发育障碍和疾病状态,例如癌症。研究复杂的调节
形态发生过程我们转向斑马鱼的发展。在斑马鱼中,中线组织的形态发生
诸如发育中胚胎的脊索,地板板和次音驱动轴伸长等结构。
这些组织源自位于被称为中线祖细胞的尾巴中的祖细胞种群
细胞(MPC)。 MPC经历了称为收敛扩展(CE)的形态发生过程,以产生
脊索。在CE期间,相邻的MPC彼此之间迁移和插入以形成Notochord。
MPC采用脊索,地板板或次体命运的决定是基于局部信号提示
例如Wnt和Notch。尽管这些信号通路已显示用于调节形态发生细胞
行为,越来越多的证据表明细胞周期也可以调节细胞行为。然而,
细胞周期状态在尾腹形态发生过程中决定细胞行为和细胞命运的机制
保持不清楚。我将在知识方面解决这一差距,并阐明细胞周期状态与
在发育过程中使用斑马鱼脊索CE发育过程中的细胞命运/形态发生。
形态发生为模型。来自我的实验室的发布数据和其他数据显示,固定核祖细胞在G1中,
虽然在细胞周期的所有阶段都可以找到地板板和次体祖细胞。此外,这些
Notochord祖细胞在G1中经历CE,并在加入Notochord后重新进入细胞周期,这表明
G1停滞促进了这种形态发生过程和努力命运的获取。在该项目的AIM 1中,我将
扰动G1在MPC中专门逮捕,并确定对CE的影响。使用转基因斑马鱼线,
包括CDK活性生物传感器以建立细胞周期状态和旋转磁盘共聚焦显微镜,我将
延时图像这些细胞周期扰动胚胎并量化CE和命运的采集。在AIM 2中,我会
探索负责在MPC中诱导G1停滞的基因调节网络(GRN),重点是
T-box转录因子Brachyury(TBXTA)。已发布的数据显示,tbxta对于notochord是必不可少的
此外,我们实验室的初步数据显示了tbxta的敲低驱动器固定祖细胞
循环并从脊索中排除,采用地板板或次体命运。结合
CDK活性生物传感器,细胞周期扰动构建体,中线定向细胞移植和旋转
磁盘共聚焦显微镜将使我能够彻底,严格地测试我的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samantha Stettnisch其他文献
Samantha Stettnisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samantha Stettnisch', 18)}}的其他基金
Cell Cycle Regulation of Cell Fate and Morphogenesis in D. rerio
斑马鱼细胞命运和形态发生的细胞周期调控
- 批准号:
10463258 - 财政年份:2022
- 资助金额:
$ 3.81万 - 项目类别:
相似国自然基金
欧亚大陆积雪对南海夏季风爆发前后华南前汛期降水年际变率的影响
- 批准号:42365004
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
前肾素受体通过PRR-LRRK2通路调控线粒体自噬影响糖尿病心肌衰老的机制及意义
- 批准号:82371574
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
四君子汤通过调节胃粘膜逆生细胞命运影响胃癌前疾病与胃癌发生的作用与机制研究
- 批准号:82373110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
星形胶质细胞介导的Sema3a/plexinA2信号通路对未成熟脑出血后少突胶质前体细胞分化成熟的影响
- 批准号:82371472
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
气溶胶对华南前汛期MCS的最大瞬时和累积降水的影响机理
- 批准号:42375080
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Imaging of brain oxygen extraction fraction in vascular contributions to dementia
脑氧提取分数在血管对痴呆症影响中的成像
- 批准号:
10660865 - 财政年份:2023
- 资助金额:
$ 3.81万 - 项目类别:
Integrating smartphone photography for trachoma, smartphone visual acuity assessment, and mobile autorefraction to enhance community-based public health monitoring
整合智能手机沙眼摄影、智能手机视力评估和移动自动验光,加强社区公共卫生监测
- 批准号:
10908756 - 财政年份:2023
- 资助金额:
$ 3.81万 - 项目类别:
Cell Cycle Regulation of Cell Fate and Morphogenesis in D. rerio
斑马鱼细胞命运和形态发生的细胞周期调控
- 批准号:
10463258 - 财政年份:2022
- 资助金额:
$ 3.81万 - 项目类别:
Psychosocial risk factors for chronic pain: Characterizing brain and genetic pathways and variation across understudied populations
慢性疼痛的心理社会危险因素:描述大脑和遗传途径以及未充分研究人群的差异
- 批准号:
10599396 - 财政年份:2022
- 资助金额:
$ 3.81万 - 项目类别:
Elucidating the cytoskeletal mechanics in stem cell niche morphogenesis
阐明干细胞生态位形态发生中的细胞骨架力学
- 批准号:
10729503 - 财政年份:2022
- 资助金额:
$ 3.81万 - 项目类别: