A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
基本信息
- 批准号:10632929
- 负责人:
- 金额:$ 32.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAgingAttenuatedBiological ModelsCardiacCardiomyopathiesCardiovascular systemCellsChronicCultured CellsDataDevelopmentDisease ProgressionDrug CompoundingEnvironmentExposure toExtracellular MatrixForce of GravityGenerationsGleanHeartHeart DiseasesHumanHuman bodyIn VitroInternationalInterventionKnowledgeLeadMagnetismMechanical StimulationMicrogravityMissionMyocardial dysfunctionMyocardiumOutcomes ResearchPatientsPhasePhysiologicalPlanet EarthPlanet MarsProcessRoleSourceSpace FlightStructureTechnologyTimeTissuesbasecardiac tissue engineeringcombatheart functionhuman modelimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesmicrophysiology systemmotion sensornovelnovel therapeutic interventionscaffoldspace station
项目摘要
Contact PD/PI: Kim, Deok-Ho
PROJECT SUMMARY
Spaceflight has been shown to have a negative impact on the heart and the cardiovascular system. As we plan
for exploration class missions that will see humans spend longer periods of time in space, such as in a manned
missions to Mars, the potential impact of spaceflight on the heart and cardiovascular system will likely be
increased. Additionally, the effects of spaceflight on the human body appear to mimic an accelerated aging
process. Given that heart disease is the number one killer of all adults in the U.S., an understanding of the
cardiogenic effects of microgravity may have implications for helping to treat millions of heart disease patients
on Earth. Unfortunately, much is still unknown regarding the effect of spaceflight on the cardiovascular system
and the heart in particular. To address this issue, we will develop a high-throughput microphysiological model of
human cardiac muscle, derived from human induced pluripotent stem cells (hiPSCs), in order to study the effects
of microgravity on cardiac tissue structure and physiological function. We will combine this cell source with a
cardiac-specific decellularized extracellular matrix (dECM)-based electroconductive composite scaffold to
promote the maturation of cultured cells. The technologies developed during this study will facilitate the
generation of mature 3D engineered cardiac tissues that recapitulate the microarchitecture and function of
human myocardium. The data collected using this platform aboard the International Space Station (ISS) will
provide a better understanding of how prolonged microgravity affects the structure and function of the human
heart. During the UG3 phase of this proposal, we will assess differences in cardiac function and physiological
maturation between cells maintained in normal gravity and microgravity environments. Engineered heart tissues
(EHTs) made from hiPSC-derived cardiomyocytes will be flown aboard the ISS for one month and be compared
to identical ground controls. Real-time assessment of EHT contractility will be achieved via a novel magnetic
coil-based motion sensor array, facilitating real-time and continuous assessment of function with minimal
demands from the flight crew. Progressing to the UH3 phase, we will focus on the assessment of novel
therapeutic strategies with which to attenuate microgravity-induced cardiomyopathy. We will assess both drug
compounds and mechanical stimulation interventions and analyze each in isolation and in concert for their ability
to improve cardiac function in space. The outcomes of this research could further improve our understanding of
the progression of chronic heart diseases on Earth, and help drive the development of new therapeutic strategies
for these debilitating conditions.
Project Summary/Abstract Page 7
联系人 PD/PI:Kim, Deok-Ho
项目概要
太空飞行已被证明对心脏和心血管系统有负面影响。正如我们计划的那样
对于探索类任务,人类将在太空中度过更长的时间,例如载人飞船
火星任务中,太空飞行对心脏和心血管系统的潜在影响可能是
增加。此外,太空飞行对人体的影响似乎类似于加速衰老
过程。鉴于心脏病是美国所有成年人的头号杀手,了解
微重力的心源性影响可能有助于治疗数百万心脏病患者
在地球上。不幸的是,关于太空飞行对心血管系统的影响仍然未知
尤其是心脏。为了解决这个问题,我们将开发一个高通量的微生理模型
人类心肌,源自人类诱导多能干细胞 (hiPSC),以研究效果
微重力对心脏组织结构和生理功能的影响。我们将把这个细胞源与
基于心脏特异性脱细胞细胞外基质(dECM)的导电复合支架
促进培养细胞的成熟。本研究期间开发的技术将促进
生成成熟的 3D 工程心脏组织,重现心脏的微结构和功能
人类心肌。使用该平台在国际空间站 (ISS) 上收集的数据将
更好地了解长期微重力如何影响人类的结构和功能
心。在该提案的 UG3 阶段,我们将评估心脏功能和生理方面的差异
在正常重力和微重力环境下维持细胞之间的成熟。工程心脏组织
由 hiPSC 衍生的心肌细胞制成的 (EHT) 将在国际空间站飞行一个月并进行比较
到相同的地面控制。 EHT 收缩性的实时评估将通过一种新型磁性来实现
基于线圈的运动传感器阵列,以最小的成本促进实时和连续的功能评估
机组人员的要求。进入UH3阶段,我们将重点评估小说
减轻微重力诱发的心肌病的治疗策略。我们将评估这两种药物
化合物和机械刺激干预措施,并单独和一致地分析每种干预措施的能力
改善太空中的心脏功能。这项研究的结果可以进一步加深我们对
地球上慢性心脏病的进展,并有助于推动新治疗策略的开发
对于这些令人衰弱的情况。
项目总结/摘要第 7 页
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biomanufacturing in low Earth orbit for regenerative medicine.
- DOI:10.1016/j.stemcr.2021.12.001
- 发表时间:2022-01-11
- 期刊:
- 影响因子:5.9
- 作者:Sharma A;Clemens RA;Garcia O;Taylor DL;Wagner NL;Shepard KA;Gupta A;Malany S;Grodzinsky AJ;Kearns-Jonker M;Mair DB;Kim DH;Roberts MS;Loring JF;Hu J;Warren LE;Eenmaa S;Bozada J;Paljug E;Roth M;Taylor DP;Rodrigue G;Cantini P;Smith AW;Giulianotti MA;Wagner WR
- 通讯作者:Wagner WR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10636892 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 32.67万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 32.67万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 32.67万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 32.67万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10116566 - 财政年份:2020
- 资助金额:
$ 32.67万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别: