Cardiac ryanodine receptor and oxidative stress
心脏兰尼碱受体与氧化应激
基本信息
- 批准号:10632861
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-09 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAreaArrhythmiaAutomobile DrivingAwardBiochemicalBiosensorCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular PhysiologyClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCoupledCouplingCysteineDiseaseEnvironmentEnzyme InhibitionEnzymesFoundationsGenesGeneticGoalsHealthHeartHeart DiseasesHomeostasisHumanImpairmentInheritedLeadLinkMediatingMentorsModificationMolecularMolecular BiologyMolecular ChaperonesOhioOxidation-ReductionOxidative StressOxidoreductasePharmacologyPhaseProtein BiochemistryReactive Oxygen SpeciesRegulationResearchRodent ModelRoleRyanodine Receptor Calcium Release ChannelSarcoplasmic ReticulumSourceStressSudden DeathSystemTechnologyTestingTherapeuticTrainingUnited StatesUniversitiesUp-RegulationViralcareerhuman modelinduced pluripotent stem cellinsightloss of functionnovelnovel therapeutic interventionprotein foldingsensor
项目摘要
PROJECT SUMMARY
Abnormal activity of the cardiac ryanodine receptor (RyR2) leads to increased and untimely release of Ca2+ from
the sarcoplasmic reticulum (SR), driving Ca2+-dependent arrhythmogenesis that can lead to sudden death in
many cardiac disorders. Oxidative modification of RyR2 by reactive oxygen species (ROS) has long been
established to enhance the sensitivity of the channels to Ca2+ within the SR (intraluminal Ca2+) in the failing heart.
However, both the intracellular source of ROS, as well as the specific redox-sensitive residues of RyR2 which
control intraluminal Ca2+ sensitivity, remain elusive. Our initial studies implicate the role of the SR oxidoreductase
system in this control, whereby molecular chaperones and enzymes that facilitate protein folding also modulate
activity of RyR2. We have identified intraluminal cysteines of RyR2 that elicit functional effects on the channel,
as well as an oxidoreductase chaperone that associates with the channel in a redox-dependent manner.
Moreover, we found upregulation of oxidoreductase enzyme in rodent models of cardiac disease, and observed
RyR2 activity stabilization with pharmacological inhibition of this enzyme. We therefore hypothesize that
dysregulation of the SR oxidoreductase system impairs luminal Ca2+ regulation of RyR2 via an ‘intraluminal SR
redox sensor’ and promotes arrhythmogenesis. We will test our hypothesis by 1) defining the molecular
components of the SR redox sensor that control luminal Ca2+ sensitivity of RyR2, and 2) determining the role of
dysregulated SR redox homeostasis in Ca2+-dependent arrhythmogenesis. To address these aims, we will
employ a multilevel experimental approach, investigating at the molecular, cellular, and whole heart level. We
propose to use heterologous systems, biochemical approaches and human induced pluripotent stem cell
cardiomyocyte (hiPSC-CM) technology to identify the RyR2 redox sensor. We also propose to study disease-
associated perturbations of the SR oxidoreductase system in rodent models of inherited and acquired Ca2+-
dependent arrhythmia, utilizing novel genetic biosensors, as well as adenoviral (AV) and adeno-associated viral
(AAV) gain- and loss- of function approaches. With renowned experts in cardiac EC coupling, protein
biochemistry and hiPSC-CM technology, The Ohio State University offers an exceptional training environment
for the mentored phase of the award to reach these goals. Furthermore, building on my strong background in
molecular biology, I will collaborate with an expert in CRISPR-mediated gene editing of hiPSC-CMs to study
these mechanisms in a relevant human model. The achievement of the proposed aims will uncover novel
regulatory mechanisms of RyR2 regulation, with potential to be therapeutically exploited. This proposal therefore
addresses a fruitful and unexplored research area, relevant to a spectrum of cardiovascular diseases, which will
lay strong foundations for an independent research career in cardiovascular physiology.
项目概要
心脏兰尼碱受体 (RyR2) 的异常活性导致 Ca2+ 增加和不及时释放
肌浆网 (SR),驱动 Ca2+ 依赖性心律失常,可导致猝死
长期以来,RyR2 被活性氧 (ROS) 氧化修饰。
旨在增强衰竭心脏 SR(腔内 Ca2+)内通道对 Ca2+ 的敏感性。
然而,ROS 的细胞内来源以及 RyR2 的特定氧化还原敏感残基
控制腔内 Ca2+ 敏感性,我们的初步研究表明 SR 氧化还原酶的作用仍然难以捉摸。
该控制系统中,促进蛋白质折叠的分子伴侣和酶也能调节
我们已经鉴定出 RyR2 的腔内半胱氨酸对通道产生功能影响,
以及以氧化还原依赖性方式与通道结合的氧化还原酶伴侣。
此外,我们发现心脏病啮齿动物模型中氧化还原酶的上调,并观察到
因此,我们通过对该酶的药理抑制来稳定 RyR2 活性。
SR 氧化还原酶系统的失调通过“腔内 SR”损害 RyR2 的腔内 Ca2+ 调节
氧化还原传感器”并促进心律失常发生,我们将通过 1)定义分子来检验我们的假设。
控制 RyR2 的腔内 Ca2+ 灵敏度的 SR 氧化还原传感器的组件,以及 2) 确定
Ca2+ 依赖性心律失常中 SR 氧化还原稳态失调 为了实现这些目标,我们将
我们采用多层次的实验方法,在分子、细胞和整个心脏水平上进行研究。
提议使用异源系统、生化方法和人类诱导多能干细胞
心肌细胞 (hiPSC-CM) 技术可识别 RyR2 氧化还原传感器 我们还建议研究疾病-
遗传性和获得性 Ca2+- 啮齿动物模型中 SR 氧化还原酶系统的相关扰动
利用新型遗传生物传感器以及腺病毒 (AV) 和腺相关病毒来治疗依赖性心律失常
(AAV) 功能获得和丧失方法,由心脏 EC 偶联、蛋白质领域的知名专家提供。
生物化学和 hiPSC-CM 技术,俄亥俄州立大学提供卓越的培训环境
此外,我在该奖项的指导阶段实现了这些目标。
分子生物学,我将与一位从事 CRISPR 介导的 hiPSC-CM 基因编辑的专家合作进行研究
这些机制在相关的人类模型中的实现将揭示新的目标。
RyR2 调节的调节机制,具有治疗利用的潜力。
涉及与一系列心血管疾病相关的富有成效且尚未探索的研究领域,这将
为心血管生理学的独立研究生涯奠定坚实的基础。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
To block or not to block: Targeting SK channels in diseased hearts.
阻断或不阻断:针对患病心脏中的 SK 通道。
- DOI:10.1016/j.yjmcc.2023.09.005
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Terentyev,Dmitry;Belevych,AndriyE;Choi,Bum-Rak;Hamilton,Shanna
- 通讯作者:Hamilton,Shanna
ER stress and calcium-dependent arrhythmias.
- DOI:10.3389/fphys.2022.1041940
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shanna Hamilton其他文献
Shanna Hamilton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shanna Hamilton', 18)}}的其他基金
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
University of Louisville Biomedical Integrative Opportunity for Mentored Experience Development -PREP (UL-BIOMED-PREP)
路易斯维尔大学生物医学综合指导经验开发机会 -PREP (UL-BIOMED-PREP)
- 批准号:
10557638 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Probing SNARE assembly and disassembly in vitro and in live cells
在体外和活细胞中探测 SNARE 组装和拆卸
- 批准号:
10679644 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Protein Phosphorylation Networks in Health and Disease
健康和疾病中的蛋白质磷酸化网络
- 批准号:
10682983 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Area of Interest 3: Engage Tribal Nations and Urban and Non-Tribal Land Based AI/AN Populations in Wisconsin
感兴趣领域 3:威斯康星州部落民族以及城市和非部落陆地 AI/AN 人群的参与
- 批准号:
10879980 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别: