Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in the Absence and Presence of Chronic Kidney Disease
无论是否患有慢性肾病,高磷血症都会导致骨骼肌萎缩
基本信息
- 批准号:10624782
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AdenineAffectAgeAreaAtrophicBiological MarkersBloodCardiovascular DiseasesCell Culture TechniquesCellsCessation of lifeChronic Kidney FailureClinicalCollagenDataDevelopmentDietEpidemicFGFR4 geneFatty acid glycerol estersFibroblast Growth Factor ReceptorsFibrosisFoodGenesGeneticHand StrengthHealthHeart HypertrophyHeart InjuriesHindlimbHistologicHistologyHormonesHousekeepingIn VitroIndividualInflammationInjuryInjury to KidneyInorganic Phosphate TransporterIntakeKidneyKnockout MiceLegLinkLipidsMAPK3 geneMagnetic Resonance ImagingMediatingMetabolismMineralsMitogen-Activated Protein KinasesMolecularMolecular AnalysisMonitorMusMuscleMuscle FibersMuscular AtrophyMyoblastsOutcomePTH genePathologicPathologyPatientsPhenotypePhysiologicalProcessProtein IsoformsRenal functionReportingResearch ProposalsRodentSaltsSerumSeverity of illnessSignal InductionSignal PathwaySignal TransductionSkeletal MuscleSkeletal muscle injurySmooth Muscle MyocytesTimeTissuesTubular formationUp-RegulationVascular Smooth MuscleVascular calcificationVitamin DWestern BlottingWild Type Mousebonecell typeclinical practicecomorbidityexperimental studyfibroblast growth factor 23improvedin vivoinhibitorinorganic phosphateknock-downloss of functionmortalitymortality riskmouse modelmuscle formnovelphospholipase C gammaprematurepreventprogramsprotective effectreceptorreduced muscle strengthskeletal muscle differentiationskeletal muscle wastingsystemic inflammatory responsetissue injuryuptake
项目摘要
PROJECT SUMMARY
Chronic kidney disease (CKD) is a health epidemic that increases risk of death due to various comorbidities.
Alterations in mineral metabolism are a hallmark of advanced CKD, where elevations in serum phosphate
levels (hyperphosphatemia) have been suspected to directly contribute to tissue damage and mortality.
Hyperphosphatemia is clinically tackled in CKD patients by administration of phosphate binders and
introduction of low phosphate diets. While the contributions of hyperphosphatemia to vascular calcification
have been established and the underlying signaling mechanism in vascular smooth muscle cells has been
studied, the potential direct effects of elevated phosphate on other tissues and cell types are not understood. In
our study, we focus on skeletal muscle wasting and atrophy which affects many patients with CKD. In our
preliminary studies, we have characterized the skeletal muscle phenotype in two mouse models of CKD, one
genetic and one diet-induced, and our molecular, histological and functional analyses indicate reduced muscle
strength and mass as well as reduced size of individual myofibers and activation of atrophy gene programs.
Since these mice develop hyperphosphatemia, and our preliminary in vitro studies indicate that phosphate
elevations can induce atrophy in differentiated skeletal muscle cells (myotubes), we hypothesize that in CKD,
elevated serum phosphate levels can directly affect skeletal muscle tissue and contribute to skeletal muscle
wasting. Since phosphate uptake via specific phosphate transporters is essential for all cells and tissues for
house-keeping functions and survival, we cannot use loss-of-function approaches to study the direct effects of
phosphate on skeletal muscle in mice. Instead, we will determine whether administration of a low phosphate
diet, when initiated early on, protects CKD mice from developing skeletal muscle atrophy. Our phenotypic
analyses will include structural and functional studies by MRI and histology, and also focus on fibrosis,
inflammation and increased fat content which are observed in skeletal muscle tissue of CKD patients. Our in
vivo study is accompanied by cell culture experiments which analyze direct effects of phosphate on myotubes.
We will determine the involvement of phosphate transporters and the signaling mechanisms that mediate
phosphate-induced atrophy in cultured myotubes. Our preliminary studies also indicate that healthy mice
receiving a high phosphate diet for three months develop signs of skeletal muscle atrophy. While the injury
seems to be milder than in CKD mice, this finding indicates that hyperphosphatemia by itself, in the absence of
kidney injury, can damage skeletal muscle. We will determine if prolonged administration of a high phosphate
diet further increases skeletal muscle damage, and whether after three months of high phosphate diet the
transition to a diet with normal phosphate content reverses skeletal muscle injury. If successful, our study
would indicate that lowering phosphate in CKD has protective effects on skeletal muscle tissue, and that diets
rich in phosphate salts, such as all processed foods, can cause skeletal muscle injury in healthy individuals.
项目概要
慢性肾病 (CKD) 是一种健康流行病,会因各种合并症而增加死亡风险。
矿物质代谢的改变是晚期 CKD 的标志,其中血清磷酸盐升高
水平(高磷血症)被怀疑直接导致组织损伤和死亡。
CKD 患者的高磷血症临床上通过给予磷酸盐结合剂和
引入低磷酸盐饮食。而高磷血症对血管钙化的贡献
已经建立并且血管平滑肌细胞的潜在信号机制已经被阐明
研究表明,磷酸盐升高对其他组织和细胞类型的潜在直接影响尚不清楚。在
我们的研究重点关注影响许多 CKD 患者的骨骼肌消耗和萎缩。在我们的
初步研究中,我们对两种 CKD 小鼠模型的骨骼肌表型进行了表征,其中一种
遗传和饮食引起的,我们的分子、组织学和功能分析表明肌肉减少
强度和质量以及单个肌纤维尺寸的减小和萎缩基因程序的激活。
由于这些小鼠出现高磷酸盐血症,我们的初步体外研究表明磷酸盐
升高会引起分化的骨骼肌细胞(肌管)萎缩,我们假设在 CKD 中,
血清磷酸盐水平升高可直接影响骨骼肌组织并有助于骨骼肌
浪费。由于通过特定磷酸盐转运蛋白的磷酸盐摄取对于所有细胞和组织的生命活动至关重要。
家务功能和生存,我们不能使用功能丧失的方法来研究
磷酸盐对小鼠骨骼肌的影响。相反,我们将确定是否施用低磷酸盐
早期开始饮食可以保护 CKD 小鼠免于出现骨骼肌萎缩。我们的表型
分析将包括通过 MRI 和组织学进行的结构和功能研究,并且还关注纤维化,
在 CKD 患者的骨骼肌组织中观察到炎症和脂肪含量增加。我们在
体内研究伴随着细胞培养实验,分析磷酸盐对肌管的直接影响。
我们将确定磷酸盐转运蛋白的参与以及介导的信号机制
培养的肌管中磷酸盐诱导的萎缩。我们的初步研究还表明,健康的小鼠
接受高磷酸盐饮食三个月会出现骨骼肌萎缩的迹象。受伤的同时
似乎比 CKD 小鼠更温和,这一发现表明高磷血症本身,在没有
肾损伤,会损害骨骼肌。我们将确定是否长期服用高磷酸盐
饮食进一步增加骨骼肌损伤,三个月的高磷酸盐饮食是否会导致骨骼肌损伤?
过渡到磷酸盐含量正常的饮食可以逆转骨骼肌损伤。如果成功的话,我们的研究
表明降低 CKD 中的磷酸盐对骨骼肌组织具有保护作用,并且饮食
富含磷酸盐的食物,例如所有加工食品,可能会导致健康个体骨骼肌损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kylie Heitman其他文献
Kylie Heitman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kylie Heitman', 18)}}的其他基金
Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in the Absence and Presence of Chronic Kidney Disease
无论是否患有慢性肾病,高磷血症都会导致骨骼肌萎缩
- 批准号:
10389333 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Combinations of Natural Product Compounds for Treatment of Alzheimer Disease and Related Dementias
用于治疗阿尔茨海默病和相关痴呆症的天然产物化合物的新组合
- 批准号:
10603708 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mitochondrial NAD+ in Acute Myeloid Leukemias
急性髓系白血病中的线粒体 NAD
- 批准号:
10655208 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
8OH-G miR-483 contributes to the aging-accelerated atherosclerosis
8OH-G miR-483 有助于衰老加速的动脉粥样硬化
- 批准号:
10793303 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别: