Developing a platform for human somatic cell rejuvenation, expansion and genetic engineering using synthetic RNA molecules
使用合成 RNA 分子开发人类体细胞再生、扩增和基因工程平台
基本信息
- 批准号:10623161
- 负责人:
- 金额:$ 47.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdultAgingAutologous TransplantationBiological AssayBirthBurn injuryCell AgingCell LineCell ProliferationCell TransplantationCell divisionCell physiologyCellsCharacteristicsClinicalClonal ExpansionComplexConnective Tissue DiseasesDNA DamageDataDevelopmentDiseaseElongation FactorEpigenetic ProcessFibroblastsFluorescenceFoundationsFutureGene TargetingGenerationsGenesGeneticGenetic EngineeringGrowthGuide RNAHematologic NeoplasmsHematological DiseaseHematopoietic stem cellsHumanHuman EngineeringIndividualKnock-inLegal patentLengthLifeLongevityLuciferasesMediatingMesenchymalMessenger RNAMitochondrial DNAMolecularMusMuscle satellite cellPhenotypePloidiesPluripotent Stem CellsPremature aging syndromeProliferatingProteinsRNARegenerative MedicineRejuvenationReporterResearchSafetySiteSkin graftSomatic CellSourceStromal CellsSystemT-LymphocyteTechnologyTelomeraseTelomere MaintenanceTelomere ShorteningTestingTimeTissue EngineeringTissue ModelTissuesTranscription CoactivatorTransfectionTransplantationTreatment EfficacyXenograft Modeladult stem cellagedcell typecellular engineeringchimeric antigen receptor T cellschronic woundclinically relevantdrug testingenzyme activityepigenomeepithelial stem cellexperimental studygene therapygenetically modified cellshealinghuman adult stem cellhuman diseaseimprovedin vivoinduced pluripotent stem cellinduced pluripotent stem cell technologykeratinocytemitochondrial dysfunctionmitochondrial metabolismnovelnovel strategiesnucleasepreservationpreventresponserestorationsenescencestemstem cellstechnology platformtelomeretransplant model
项目摘要
Project Summary
The short lifespan of human somatic cells, including adult stem cells, in ex vivo settings is a significant
hurdle for many clinical and research applications. Therefore, the development of novel approaches that can
facilitate the expansion of adult cells and at the same time restore the young-like characteristics of these cells
without permanent immortalization is of high priority for regenerative medicine. Telomere attrition is one of the
well-characterized mechanisms responsible for the decline in proliferation and function of somatic cells in
culture and can be counteracted by the activity of the enzyme telomerase. Mitochondrial dysfunctions and
epigenetic changes are also among mechanisms responsible for cellular aging, senescence and decline in
functionality. In our preliminary experiments, we developed a patent-pending non-integrating RNA-based
cocktail of factors that upon transfection into human somatic cells increases the length of telomeres to that
observed in pluripotent stem cells, improves the proliferation rate of cells, restores mitochondrial DNA content
and allows for a clonal expansion of individually seeded adult human fibroblasts (FBs). We now propose to use
this rejuvenating RNA cocktail to develop two novel cellular technology platforms. One will improve the
expansion of human primary somatic cells and promote their rejuvenation in a clinically relevant manner
without permanent immortalization, while maintaining the proliferative capacity, functionality and normal
characteristics of these primary cells. The second platform will allow for the efficient clinically relevant genetic
engineering directly in primary somatic cells. In the latter, the use of our rejuvenating RNA cocktail will allow for
the clonal expansion of genetically modified primary somatic cells, while preserving the functionality of these
cells for subsequent transplantation. To develop the cell expansion platform, in Specific Aims 1 and 2, we will
further characterize the effect of our cocktail on three human cell types commonly used in research and clinical
settings: FBs, keratinocytes (KCs) and mesenchymal stromal/stem cells (MSCs). We will perform detailed
molecular and functional characterizations of low and high passage human FBs, KCs and MSCs treated with
our cocktail with a focus on the restoration of young-like characteristics of these cells. In Specific Aim 3, we will
employ our rejuvenating cocktail to develop a platform for the generation of genetically modified human
somatic cell lines. Using Cas9-mediated gene targeting, we will generate a panel of primary human FB, KC
and MSC lines with the site-specific knock-in of fluorescence reporters and luciferase. The derived lines will be
tested ex vivo and in vivo to confirm their functionality and safety, providing feasibility data for the development
of novel somatic cell gene therapies for many diseases. If successful, the studies will serve as a proof of
principle for developing rejuvenating strategies and genetic engineering platforms for other somatic cell types
used for transplantation, such as hematopoietic and muscle stem cells.
项目概要
人类体细胞(包括成体干细胞)在离体环境中的寿命较短是一个重要原因
许多临床和研究应用的障碍。因此,开发新方法可以
促进成体细胞的扩张,同时恢复这些细胞的年轻特征
没有永久的永生是再生医学的首要任务。端粒磨损是其中之一
体细胞增殖和功能下降的明确机制
培养物,并且可以被端粒酶的活性抵消。线粒体功能障碍和
表观遗传变化也是导致细胞衰老、衰老和衰退的机制之一
功能。在我们的初步实验中,我们开发了一种正在申请专利的基于 RNA 的非整合
转染人体细胞后,端粒长度会增加至
在多能干细胞中观察到,提高细胞增殖率,恢复线粒体 DNA 含量
并允许单独接种的成人成纤维细胞 (FB) 进行克隆扩增。我们现在建议使用
这种恢复活力的 RNA 混合物可开发两个新颖的细胞技术平台。一将改善
扩增人类原代体细胞并以临床相关方式促进其再生
没有永久永生化,同时保持增殖能力、功能和正常
这些原代细胞的特征。第二个平台将允许有效的临床相关遗传
直接在原代体细胞中进行工程改造。在后者中,使用我们的复兴 RNA 鸡尾酒将允许
转基因原代体细胞的克隆扩增,同时保留这些细胞的功能
用于后续移植的细胞。为了开发细胞扩增平台,在具体目标 1 和 2 中,我们将
进一步表征我们的鸡尾酒对研究和临床中常用的三种人类细胞类型的影响
设置:FB、角质形成细胞 (KC) 和间充质基质/干细胞 (MSC)。我们将进行详细的
低传代和高传代人 FB、KC 和 MSC 处理后的分子和功能特征
我们的鸡尾酒专注于恢复这些细胞的年轻特征。在具体目标 3 中,我们将
使用我们的恢复活力鸡尾酒开发一个用于生成转基因人类的平台
体细胞系。使用 Cas9 介导的基因打靶,我们将生成一组原代人类 FB、KC
以及具有荧光报告基因和荧光素酶位点特异性敲入的 MSC 系。导出的线将是
进行离体和体内测试,确认其功能性和安全性,为开发提供可行性数据
针对许多疾病的新型体细胞基因疗法。如果成功的话,这些研究将作为证据
为其他体细胞类型开发复兴策略和基因工程平台的原则
用于移植,如造血干细胞和肌肉干细胞。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Development of an Advanced Model for Multilayer Human Skin Reconstruction In Vivo.
- DOI:10.21769/bioprotoc.4919
- 发表时间:2024-01-20
- 期刊:
- 影响因子:0.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Kogut其他文献
Igor Kogut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Kogut', 18)}}的其他基金
Developing a platform for human somatic cell rejuvenation, expansion and genetic engineering using synthetic RNA molecules
使用合成 RNA 分子开发人类体细胞再生、扩增和基因工程平台
- 批准号:
10399980 - 财政年份:2021
- 资助金额:
$ 47.65万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 47.65万 - 项目类别:
Maternal inflammation in relation to offspring epigenetic aging and neurodevelopment
与后代表观遗传衰老和神经发育相关的母体炎症
- 批准号:
10637981 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别:
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别:
Interrogating the role of m6A mRNA methylation in the aging of the β-cell and diabetes
探讨 m6A mRNA 甲基化在 β 细胞衰老和糖尿病中的作用
- 批准号:
10644215 - 财政年份:2023
- 资助金额:
$ 47.65万 - 项目类别: