Modeling and manipulating social percepts in individuals

建模和操纵个体的社会认知

基本信息

  • 批准号:
    10623213
  • 负责人:
  • 金额:
    $ 78.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-17 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Biases in whether and how social interactions are perceived are a hallmark symptom of most major mental illnesses (e.g., people with autism tend to under-perceive social interactions, people with paranoid schizophrenia tend to over-perceive social interactions, and people with depression tend to perceive social interactions in a negative light). These biases likely reflect the extreme end of a continuum that exists in the normative population, suggesting that characterizing individual differences in social-perceptual styles is critical to furthering our understanding of disease. That humans are primed to perceive social interactions even in stripped-down, unlifelike stimuli (e.g., animations of geometric shapes) is a phenomenon that has long been recognized and exploited to study social cognition in both normative and patient populations. However, when it comes to these basic stimuli, while we may have the intuition that we “know it when we see it”, we do not understand what it is about stimuli deemed social that makes them social—in other words, which specific visual features are required, and in what doses. Furthermore, because task paradigms are often a simple binary choice (i.e., ‘social’ or ‘random’), we do not understand heterogeneity across individuals in terms of their thresholds for deciding if a given stimulus represents a social interaction, and if so, what kind of social interaction (i.e., positive or negative). A critical step toward understanding and correcting biased social cognition in mental illness is to define the fundamental sensory features of basic social interactions, and determine how and why different people compute differently on these features to give rise to different social percepts. This will open the door to interventions that can prevent an individual from going down a biased path. In this project, we will establish a social stimulus class for which we have precise, parametric control over low-level visual features. This will allow us to construct individual “social tuning curves” for various types of social interactions and determine how variability in these tuning curves relates to trait phenotypes. Combining these stimuli with simultaneous neuroimaging (fMRI) and eye-tracking will shed light on where in the processing hierarchy percepts diverge within and across individuals, and allow us to test the hypothesis that social percepts emerge earlier in the cortical hierarchy than previously thought. This would indicate that idiosyncratic social cognition is more closely linked to automatic, sensory-driven processes than controlled reflection, a distinction that is important for informing diagnostic and interventional tools. Finally, within a set of densely sampled individuals, we will directly test causality between stimulus features, brain activity, and percepts using real-time fMRI to implicitly steer individuals toward a given percept based on ongoing patterns of brain activity. The outcome of the proposed research will be a causal model of how stimulus features and brain dynamics interact to give rise to a given social percept within a given individual. This model will provide testable hypotheses regarding targeted therapies to normalize biased cognition in mental illnesses.
项目摘要 偏见是否以及如何感知社交互动是大多数主要精神的标志 疾病(例如,自闭症患者倾向于低估社交互动,患有精神分裂症的人 倾向于过度感知社会互动,抑郁症的人倾向于感知社会互动 负灯)。这些偏见可能反映了正常人群中存在的持续的极端, 暗示表征社会感知风格中的个体差异对于推动我们的 了解疾病。即使在剥离中,人类也可以理解社交互动 毫无样式的刺激(例如,几何形状的动画)是一种长期以来已被认可的现象 被利用以研究正常和患者人群中的社会认知。但是,当涉及到这些 基本的刺激,虽然我们可能具有“看到它时知道”的直觉,但我们不了解它是什么 关于刺激被认为使它们社交的社交 - 换句话说,需要哪些特定的视觉特征, 以及什么剂量。此外,因为任务范例通常是一个简单的二元选择(即“社会”或 “随机”),我们不理解个人的异质性,从他们的门槛来决定是否a 给定的刺激代表了社会互动,如果是的,则是什么样的社会互动(即积极或负面)。 迈向理解和纠正精神疾病中有偏见的社会认知的关键步骤是定义 基本社交互动的基本感官特征,并确定不同人如何以及为什么计算 在这些特征上以不同的方式产生不同的社会感知。这将打开干预措施的大门 可以防止个人沿着有偏见的道路走。在这个项目中,我们将建立一个社会刺激课 为此,我们对低级视觉特征进行了精确的参数控制。这将使我们能够构建 各种类型的社交互动的个人“社交调节曲线”,并确定这些变异性如何 调谐曲线与性状表型有关。将这些刺激与同时神经影像(fMRI)结合在一起 远程跟踪将阐明处理层次结构中的位置,感知在个人内部和跨个体之间的差异, 并允许我们检验以下假设,即社会感知在皮质层次结构早期出现了 想法。这表明特质的社会认知与自动,感官驱动的联系更加紧密联系 过程而不是受控反射,这是一个与诊断和介入有关的区别,这一点很重要 工具。最后,在一组无用的抽样个体中,我们将直接测试刺激特征之间的因果关系, 大脑活动,并感知使用实时fMRI隐式将个体隐式驱使基于给定的感知 正在进行的大脑活动模式。拟议研究的结果将是一种因果模型 特征和大脑动力学相互作用,从而引起给定个人的给定社会知觉。这个模型 将提供有关针对性疗法的可检验假设,以使精神疾病中的偏见认知正常化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Emily Suzanne Finn的其他基金

Modeling and manipulating social percepts in individuals
建模和操纵个体的社会认知
  • 批准号:
    10435840
    10435840
  • 财政年份:
    2022
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:
Linking brain activity during naturalistic tasks to individual phenotypes on the depression spectrum
将自然任务期间的大脑活动与抑郁谱上的个体表型联系起来
  • 批准号:
    10238174
    10238174
  • 财政年份:
    2020
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:
Linking brain activity during naturalistic tasks to individual phenotypes on the depression spectrum
将自然任务期间的大脑活动与抑郁谱上的个体表型联系起来
  • 批准号:
    10415111
    10415111
  • 财政年份:
    2020
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
  • 批准号:
    10543569
    10543569
  • 财政年份:
    2023
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
  • 批准号:
    10797056
    10797056
  • 财政年份:
    2023
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
  • 批准号:
    10752370
    10752370
  • 财政年份:
    2023
  • 资助金额:
    $ 78.39万
    $ 78.39万
  • 项目类别: