A comprehensive thermodynamic and structural characterization of ion channel function and its regulation by the lipid bilayer composition
离子通道功能的综合热力学和结构表征及其由脂质双层组成的调节
基本信息
- 批准号:10623911
- 负责人:
- 金额:$ 59.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AchievementAffinityAlkali MetalsApplications GrantsArrhythmiaAutoimmune DiabetesAutoimmune DiseasesBehaviorBinding SitesCalorimetryCell membraneCellsConsumptionCouplingDevelopmentDiseaseDisulfidesDrug TargetingElectrophysiology (science)EngineeringEpilepsyEscherichia coliEukaryotic CellFunctional disorderFundingHumanIndividualIon ChannelIonsLipid BilayersLipidsMeasuresMembrane LipidsMetal Ion BindingMethodologyMolecular ConformationPathologicPharmaceutical PreparationsPhospholipidsPhysiologicalPhysiologyPotassium ChannelRegulationResolutionStructureSyndromeTherapeuticThermodynamicsThickTimeTitrationsUnited States National Institutes of HealthWorkdesignnovelnovel therapeuticsoverexpressionscaffold
项目摘要
Project summary
The central tenet of this grant application contains two interdependent components 1) how does the structure
determine the function of K+-channels? and how does the cell membrane phospholipid composition
regulate their structure-function correlations? Our work deal with these two fundamental questions, which
encompasses three aspects of ion channel physiology: 1) Which are the structural changes underlying K+-
channel gating, permeation, and selectivity? 2) How does a bidirectional allosteric coupling between the
activation gate (AG) and the selectivity filter (SF) control K+-channels function? and 3) How does the cell
membrane lipid composition regulate K+-channels behavior? Understanding at the atomic level how K+-
channels work will assist during the discovery of novel therapeutic drugs. We will use several
methodological advancements developed by us during the last 10 years of continuous funding from the NIH.
These achievements are: 1) the elucidation of an atomic resolution gating cycle of a K+-channel 2) the
engineering of a disulfide bridged locked open KcsA scaffold that produces atomic resolution diffracting crystals
and allow us to characterize its function by electrophysiology at pH 7.0 (a physiologically relevant pH) 3) the
measuring of the alkali metal ions binding affinity by Isothermal Titration Calorimetry of the whole selectivity filter
of a K+-channel in the open conformation and/or of individual ion binding sites 4) the discovery of a novel
mechanism of KcsA activation by reducing the thickness of the cell membrane and 5) the development of a
new methodology for the overexpression of properly folded and functional Human K+-channels of
Biomedical Importance in E. coli cells. Our work using KcsA as a structural surrogate is foundational of our
current understanding of K+-channel function. Now we are expanding into human K+-channels by developing a
groundbreaking new methodology for the overexpression of properly folded and functional human Kv-channels
in E. coli cells, which eliminates the otherwise time consuming and outrageously expensive use of eukaryotic
cells. We will develop an integrative understanding of how the structure of ion channels change its conformation
to regulate their function within an energetic landscape determined by the lipid composition of the cell membrane.
We aim to determine the structural changes underlying ion permeation, ion selectivity and C-type inactivation
gating and their interdependence with the lipid bilayer composition of the cell membrane in a bacterial channel
and in two human Kv-channels of Biomedical Relevance. Finally, we will produce a conceptual framework about
how the allosteric coupling between a K+-channel’s selectivity filter and its activation gate define ion channel
function and how is modulated by subunit cooperativity and the phospholipid composition of the cell membrane.
The completion of this grant application will produce invaluable information to assist in the smart design of safer
therapeutic drugs.
项目摘要
该赠款应用程序的中心宗旨包含两个相互依存的组件1)结构如何
确定K+通道的功能?细胞膜磷脂组成如何
调节其结构 - 功能相关性?我们的工作处理了这两个基本问题,这是
包括离子通道生理学的三个方面:1)是K+ - 的结构变化
通道门控,渗透和选择性? 2)双向变构耦合如何
激活门(AG)和选择性滤波器(SF)控制K+通道功能? 3)细胞如何
膜脂质组成调节K+通道行为?在原子层中了解K+如何
渠道工作将在发现新型治疗药物期间有助于。我们将使用几个
我们在NIH持续资金的最后十年中发展的方法学进步。
这些成就是:1)阐明A+通道的原子分辨率门控循环2)
二硫键架锁定的开放式kcsa脚手架的工程,产生原子分辨率衍射晶体
并允许我们通过pH 7.0的电生理学来表征其功能(一个物理相关的pH)3)
通过等温滴定量热法对碱金属离子结合亲和力的测量整个选择性过滤器
在开放构象和/或单个离子结合位点中的K+ - 通道的发现4)发现小说
通过减少细胞膜的厚度,KCSA激活的机制和5)
过表达正确折叠和功能性的人K+通道的新方法
大肠杆菌细胞中的生物医学重要性。我们使用KCSA作为结构代理的工作是我们的基础
当前对K+通道功能的理解。现在,我们通过开发一个
开创性的新方法,用于过表达正确折叠和功能性的人类KV通道
在大肠杆菌细胞中,消除了原本耗时和非常昂贵的真核的使用
细胞。我们将对离子渠道结构如何改变其构象的结构有综合的理解
在通过细胞膜的脂质组成确定的能量景观中调节其功能。
我们旨在确定离子渗透,离子选择性和C型失活的结构变化
门控及其与细菌通道中细胞膜的脂质双层组成的相互依存关系
以及在生物医学相关性的两种人类KV通道中。最后,我们将建立一个概念框架
K+通道的选择性滤波器及其激活门之间的变构耦合如何定义离子通道
功能以及如何通过亚基配位和细胞膜的磷脂组成调节。
该赠款申请的完成将产生宝贵的信息,以协助安全设计
治疗药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Gonzalo Cuello其他文献
Luis Gonzalo Cuello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Gonzalo Cuello', 18)}}的其他基金
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
$ 59.4万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel function
K 通道功能的高分辨率晶体学和功能研究
- 批准号:
9895075 - 财政年份:2012
- 资助金额:
$ 59.4万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel function.
K 通道功能的高分辨率晶体学和功能研究。
- 批准号:
9769053 - 财政年份:2012
- 资助金额:
$ 59.4万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel gating
K 通道门控的高分辨率晶体学和功能研究
- 批准号:
8449092 - 财政年份:2012
- 资助金额:
$ 59.4万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel function.
K 通道功能的高分辨率晶体学和功能研究。
- 批准号:
10197146 - 财政年份:2012
- 资助金额:
$ 59.4万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel gating
K 通道门控的高分辨率晶体学和功能研究
- 批准号:
8642193 - 财政年份:2012
- 资助金额:
$ 59.4万 - 项目类别:
High-resolution crystallographic and functional studies of K+ channel gating
K 通道门控的高分辨率晶体学和功能研究
- 批准号:
8290873 - 财政年份:2012
- 资助金额:
$ 59.4万 - 项目类别:
相似国自然基金
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多尺度表征和跨模态语义匹配的药物-靶标结合亲和力预测方法研究
- 批准号:62302456
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
- 批准号:32301185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Utilizing the power of synthetic biology and De Novo design for the overexpression and biochemical stabilization of KCNA6 or Kv1.6 potassium channels in the E. coli expression system
利用合成生物学和 De Novo 设计的力量,实现大肠杆菌表达系统中 KCNA6 或 Kv1.6 钾通道的过度表达和生化稳定
- 批准号:
10666856 - 财政年份:2023
- 资助金额:
$ 59.4万 - 项目类别:
Examining G-quadruplex metal site heterogeneity and the influence of peptide binding using 2D IR spectroscopy
使用 2D 红外光谱检查 G-四链体金属位点异质性和肽结合的影响
- 批准号:
10730921 - 财政年份:2023
- 资助金额:
$ 59.4万 - 项目类别: