Heteromutivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogues

作为人工血小板类似物的异多价肽-脂质纳米结构

基本信息

  • 批准号:
    10579965
  • 负责人:
  • 金额:
    $ 53.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-08 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Platelets play a central role in hemostasis via injury site-selective multi-step mechanisms of: (1) Adhesion to vWF and collagen, (2) Fibrinogen-mediated aggregation to form the primary hemostatic plug, (3) Biointerfacial presentation of anionic phosphatidylserine (PS) on the activated platelet surface for procoagulant amplification of thrombin (hence fibrin), and (4) clot-localized secretion of platelet granule contents (e.g. inorganic polyphosphate, PolyP) to locally enhance fibrin stability. These mechanisms are significantly compromised in non-compressible traumatic hemorrhage, which remains a major cause of mortality. The `gold standard' for treating such hemorrhage is massive transfusion of whole blood or components (platelets, plasma, RBC). Especially, platelet transfusion has shown tremendous clinical benefit in saving lives in trauma. However, platelets are rarely available in resource-limited hospitals and unavailable pre-hospital, due to challenges of storage, portability, high risk of bacterial contamination and very short shelf-life (~5 days). We aim at addressing this challenge by designing biomaterials-based `artificial platelet' nanoconstructs. To this end, utilizing a previous R01 award (HL121212) we developed self-assembled lipid-peptide nanoconstructs that mimic and integrate the platelet mechanisms of (1) and (2) stated above. This design showed hemostatic ability in vitro and in thrombocytopenic mouse tail-bleeding models, and modest efficacy in severe trauma models. Building on this, we now propose to mimic the mechanisms of (3) and (4) on a liposomal template by designing unique enzyme- responsive lipopeptides, that will subsequently allow integration of all four mechanisms onto a single nanoconstruct for a superior artificial platelet design. Our central hypothesis is `Modular amplification of hemostasis via mimicry of platelet's biointerfacial and secretory mechanisms within an artificial platelet construct can significantly attenuate hemorrhage and enhance survival in trauma'. To test this, our Specific Aims are to: (1) Evaluate stimuli (plasmin)-triggered exposure of PS on lipidic nanoconstructs for platelet-inspired amplification of thrombin (hence fibrin) site-specifically in trauma; (2) Evaluate stimuli (thrombin)-triggered release of inorganic polyphosphate (PolyP) as a payload from lipidic nanoconstructs for injury site-targeted stabilization of fibrin clot; and (3) Integrate these independent synergistic components in artificial platelet nanoconstructs to evaluate hemostatic efficacy and survival in rodent trauma model. The traumatic insult to vascular endothelium results in enhanced secretion of tissue plasminogen activator (hence plasmin) at the clot site, resulting in rapid fibrin degradation (hyperfibrinolysis) and compromising clot stability. Exploiting this plasmin to expose PS on `artificial platelet' surface will allow enhanced thrombin (and hence fibrin) generation to offset hyperfibrinolysis. This thrombin can then also act as a local trigger to destabilize the `artificial platelet' constructs and release encapsulated PolyP to enhance fibrin stability and augment hemostasis. Our principal innovation is in uniquely mimicking platelet's multi-step mechanisms of hemostasis on a single nanoconstruct.
血小板通过以下损伤部位选择性多步骤机制在止血中发挥核心作用:(1) 粘附 vWF 和胶原蛋白,(2) 纤维蛋白原介导的聚集形成初级止血塞,(3) 生物界面 将阴离子磷脂酰丝氨酸 (PS) 呈现在活化的血小板表面上以实现促凝血放大 凝血酶(因此是纤维蛋白),以及(4)血小板颗粒内容物的凝块局部分泌(例如无机物) 聚磷酸盐,PolyP)以局部增强纤维蛋白稳定性。这些机制受到严重损害 不可压缩性创伤性出血仍然是死亡的主要原因。 “黄金标准” 治疗此类出血的方法是大量输注全血或成分(血小板、血浆、红细胞)。 特别是,血小板输注在挽救创伤生命方面显示出巨大的临床益处。然而, 由于以下挑战,资源有限的医院和院前医院很少能提供血小板: 储存、便携、细菌污染风险高和保质期很短(约 5 天)。我们的目标是解决 通过设计基于生物材料的“人造血小板”纳米结构来应对这一挑战。为此,利用 之前的 R01 奖 (HL121212) 我们开发了自组装脂质肽纳米结构,可以模仿和 整合上述(1)和(2)的血小板机制。该设计显示了体外止血能力 在血小板减少小鼠尾部出血模型中,在严重创伤模型中效果有限。在此基础上, 我们现在建议通过设计独特的酶-在脂质体模板上模拟(3)和(4)的机制 响应性脂肽,随后将允许将所有四种机制整合到一个单一的 用于卓越的人造血小板设计的纳米结构。我们的中心假设是“模块化放大 通过模拟人工血小板内血小板的生物界面和分泌机制来止血 构建体可以显着减少出血并提高创伤中的存活率”。为了测试这一点,我们的具体目标 目的是: (1) 评估刺激(纤溶酶)触发的 PS 在脂质纳米结构上的暴露,以用于血小板启发 创伤中凝血酶(纤维蛋白)的特异性扩增; (2) 评估刺激(凝血酶)触发 释放无机多磷酸盐(PolyP)作为脂质纳米结构的有效负载,用于靶向损伤部位 纤维蛋白凝块的稳定; (3) 将这些独立的协同成分整合到人工血小板中 纳米结构评估啮齿动物创伤模型的止血功效和存活率。创伤性侮辱 血管内皮导致凝块处组织纤溶酶原激活剂(因此称为纤溶酶)的分泌增强 部位,导致纤维蛋白快速降解(纤溶亢进)并损害凝块稳定性。利用这个 纤溶酶将 PS 暴露在“人造血小板”表面将增强凝血酶(以及纤维蛋白)的生成 以抵消纤溶亢进。这种凝血酶还可以充当局部触发因素,破坏“人造血小板”的稳定性 构建并释放封装的 PolyP,以增强纤维蛋白稳定性并增强止血作用。我们的校长 创新在于在单个纳米结构上独特地模仿血小板的多步骤止血机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anirban Sen Gupta其他文献

Anirban Sen Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anirban Sen Gupta', 18)}}的其他基金

Platelet-inspired Delivery System for Targeted Thrombolytic Therapy
用于靶向溶栓治疗的血小板启发输送系统
  • 批准号:
    9127360
  • 财政年份:
    2015
  • 资助金额:
    $ 53.27万
  • 项目类别:
Heteromultivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogs
作为人工血小板类似物的异多价肽-脂质纳米结构
  • 批准号:
    8803679
  • 财政年份:
    2014
  • 资助金额:
    $ 53.27万
  • 项目类别:
Heteromutivalent Peptide-Lipid Nanoconstructs as Artificial Platelet Analogues
作为人工血小板类似物的异多价肽-脂质纳米结构
  • 批准号:
    10330577
  • 财政年份:
    2014
  • 资助金额:
    $ 53.27万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 53.27万
  • 项目类别:
Developing novel therapies to improve blood stem cell transplantation outcomes
开发新疗法以改善造血干细胞移植结果
  • 批准号:
    10830194
  • 财政年份:
    2023
  • 资助金额:
    $ 53.27万
  • 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
  • 批准号:
    10883872
  • 财政年份:
    2023
  • 资助金额:
    $ 53.27万
  • 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
  • 批准号:
    10606952
  • 财政年份:
    2023
  • 资助金额:
    $ 53.27万
  • 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
  • 批准号:
    10735681
  • 财政年份:
    2023
  • 资助金额:
    $ 53.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了