Bayesian Data Augmentation for Recurrent Events in Electronic Medical Records of Patients with Cancer
癌症患者电子病历中重复事件的贝叶斯数据增强
基本信息
- 批准号:10579304
- 负责人:
- 金额:$ 7.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressArchivesBayesian AnalysisBayesian MethodCancer PatientCessation of lifeClinicalComprehensive Cancer CenterComputer softwareComputerized Medical RecordComputing MethodologiesDataData SetDatabasesDoseEventGeneral PopulationHealthHospitalsIncidenceInjuryInterventionMalignant NeoplasmsMarkov ChainsMarkov chain Monte Carlo methodologyMeasuresMethodsModelingNational Comprehensive Cancer NetworkNauseaOhioOncologistOutcomeOutpatientsPainParticipantPatientsPerformancePharmaceutical PreparationsProcessRecording of previous eventsRecurrenceReportingResearchResourcesRiskRisk FactorsSample SizeSchemeStatistical MethodsSurveysSurvivorsSymptomsSystemTimeUniversitiesVisitWalkingclinical practiceexperiencefall injuryfall riskfallshealth related quality of lifeimprovedinnovationmalignant breast neoplasmolder patientparticipant enrollmentpatient health informationpatient orientedrisk stratificationside effectsimulationsoftware developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
Cancer and its treatment frequently result in sequelae that are not pro-actively reported but rather intermittently
assessed. For example, patients with cancer experience a higher rate of falls compared to the general
population, but falls are commonly reported only when elicited. Although electronic medical record (EMR)
databases capture these elicited reports, the assessments are intermittent and their intervals often overlap,
e.g., if patients are asked “have you fallen within the last three months” at two outpatient visits one month
apart. However, current methods for analyzing event counts within intervals when exact event times are
unknown (“interval count data”) require assessment intervals to be non-overlapping. This project addresses
this critical gap by developing Bayesian statistical methods and software for analyzing interval count data with
overlapping intervals, as arise from fall reports and other intermittently assessed EMR data. These methods
apply a Gibbs sampler in which one step uses Bayesian data augmentation to impute full event histories
(including event times) to which other steps may apply a broad toolkit of models for more fully observed
recurrent event data. In Aim 1 we will develop and apply Bayesian data augmentation for intermittently
assessed recurrent events following Poisson processes. Event histories will be imputed using specialized
rejection samplers optimized for high computational efficiency in our data setting. In Aim 2 we will develop and
apply Bayesian data augmentation for intermittently assessed recurrent events following renewal processes.
Event histories will be imputed using random walk samplers with specialized perturbation proposals. The
performance of both methods will be assessed via simulation study, and an R software package will be
developed and distributed to CRAN. In both aims we will evaluate incidence and risk factors for falls via EMR
data from an NCCN comprehensive cancer center using the developed statistical methods. Through our
proposed Bayesian data augmentation approach and software developed, this project will provide uniquely
capable and innovative tools to integrate clinical, demographic, and recurrent outcome data as commonly
recorded in EMR databases to assess incidence and risk, allowing for risk-stratified interventions. The tools for
recurrent events, though originally conceived of to address falls among patients with cancer and survivors, will
be broadly applicable to both other types of patient-reported sequelae such as occurrences of nausea and
pain, and other health-related fields that collect recurrent event data in EMR databases.
项目摘要/摘要
癌症及其治疗经常导致后遗症,这些后遗症未被积极报道,而是间歇性地报道的
评估。例如,癌症患者的跌倒率与一般性相比更高
人口,但通常仅在引起时才报告跌倒。虽然电子病历(EMR)
数据库捕获了这些引起的报告,评估是间歇性的,它们的间隔通常重叠,
例如,如果询问患者“过去三个月内跌倒了”,两个月的门诊就诊
除外。但是,当确切的事件时间为时,当前用于分析事件计数的方法是
未知(“间隔计数数据”)要求评估间隔是不重叠的。该项目解决
通过开发贝叶斯统计方法和软件来分析间隔计数数据,这一关键差距
秋季报告和其他间歇性评估EMR数据的重叠间隔。这些方法
应用Gibbs采样器,其中一个步骤使用贝叶斯数据增强来估算完整的事件历史
(包括事件时间)其他步骤可以在哪些步骤中应用广泛的模型工具包,以进行更充分的观察
经常性事件数据。在AIM 1中,我们将开发并应用贝叶斯数据扩展以间歇性
评估了泊松过程后的经常性事件。事件历史将使用专业归为
在我们的数据设置中,拒绝样品针对高计算效率进行了优化。在AIM 2中,我们将发展并
在更新过程后,将贝叶斯数据增强应用于间歇性评估的经常性事件。
事件历史将使用带有专门扰动建议的随机步行样品归纳。这
两种方法的性能将通过仿真研究评估,R软件包将是
开发并分发给克兰。在这两个目标中,我们都将通过EMR评估跌倒的事件和风险因素
使用开发的统计方法来自NCCN综合癌症中心的数据。通过我们的
拟议的贝叶斯数据增强方法和已开发的软件,该项目将提供独特的
具有综合临床,人口统计和经常性结果数据的能力和创新工具通常
记录在EMR数据库中以评估发病率和风险,从而允许风险分层的干预措施。工具
反复发生的事件,尽管最初是为了解决癌症患者和幸存者的跌倒,但
广泛适用于其他两种类型的患者报告的后遗症,例如恶心和
疼痛和其他与健康相关的领域,这些领域在EMR数据库中收集复发事件数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick M Schnell其他文献
Advance Care Planning (ACP) in Medicare Beneficiaries with Heart Failure.
患有心力衰竭的医疗保险受益人的预先护理计划 (ACP)。
- DOI:
10.1007/s11606-024-08604-1 - 发表时间:
2024 - 期刊:
- 影响因子:5.7
- 作者:
S. Bose Brill;Sean R Riley;Laura C. Prater;Patrick M Schnell;Anne L R Schuster;Sakima A Smith;Beth Foreman;Wendy Yi Xu;Jillian Gustin;Yiting Li;Chen Zhao;Todd Barrett;J. M. Hyer - 通讯作者:
J. M. Hyer
How Ohio public library systems respond to opioid-related substance use: a descriptive analysis of survey results
俄亥俄州公共图书馆系统如何应对阿片类药物相关物质的使用:调查结果的描述性分析
- DOI:
10.1186/s12889-024-18799-x - 发表时间:
2024 - 期刊:
- 影响因子:4.5
- 作者:
Patrick M Schnell;Ruochen Zhao;Sydney Schoenbeck;Kaleigh Niles;Sarah R MacEwan;Martin Fried;Janet E Childerhose - 通讯作者:
Janet E Childerhose
Patrick M Schnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick M Schnell', 18)}}的其他基金
Bayesian Data Augmentation for Recurrent Events in Electronic Medical Records of Patients with Cancer
癌症患者电子病历中重复事件的贝叶斯数据增强
- 批准号:
10436083 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
相似国自然基金
科学基金档案资料信息化管理探索与实践研究
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
面向单套制的国家自然科学基金项目档案分级分类管理研究
- 批准号:J2224001
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:专项项目
科学基金档案资料信息化管理探索与实践研究
- 批准号:52242312
- 批准年份:2022
- 资助金额:10.00 万元
- 项目类别:专项项目
零信任架构下的电子健康档案动态共享研究
- 批准号:72274077
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
胶州湾河口湿地盾纤亚纲纤毛虫的多样性研究与档案资料建立
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Using in vivo genetic and physical interaction data for structure determination of protein assemblies
使用体内遗传和物理相互作用数据确定蛋白质组装体的结构
- 批准号:
10714613 - 财政年份:2023
- 资助金额:
$ 7.38万 - 项目类别:
Bayesian Data Augmentation for Recurrent Events in Electronic Medical Records of Patients with Cancer
癌症患者电子病历中重复事件的贝叶斯数据增强
- 批准号:
10436083 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
- 批准号:
10710402 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Platform to support clinical variant interpretation through probabilistic assessment of functional evidence
通过功能证据的概率评估支持临床变异解释的平台
- 批准号:
10546337 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别:
Developing an innovative statistical framework to integrate multiple verbal autopsy datasets to estimate cause-specific mortality
开发创新的统计框架来整合多个口头尸检数据集,以估计特定原因的死亡率
- 批准号:
10576014 - 财政年份:2022
- 资助金额:
$ 7.38万 - 项目类别: