Expanding the Pathogenic Mechanisms of Calmodulinopathies
扩展钙调蛋白病的致病机制
基本信息
- 批准号:10580095
- 负责人:
- 金额:$ 19.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsArrhythmiaBindingBiological ModelsBiophysicsBrainCalciumCalcium ChannelCalmodulinCardiacCell physiologyCellsClosure by clampCouplingDNA Sequence AlterationDevelopmentDevelopmental Delay DisordersDiseaseElectrophysiology (science)ElementsExhibitsFamilyFeedbackFluorescence Resonance Energy TransferFutureGenetic TranscriptionHeartHumanHybridsImageImmune systemImpairmentIncidenceInduced pluripotent stem cell derived neuronsLifeLobeMediatingMorphologyMuscle ContractionMutationNeurologicNeurologic DeficitNeurologic DysfunctionsNeuronsNeuropathogenesisP-Q type voltage-dependent calcium channelPathogenesisPathogenicityPathologyPatientsPhenotypePlayProcessProteinsRegulationResearchRoleSignal TransductionSourceSymptomsTailToxinbiophysical analysiscomorbidityelectrical propertyexperimental studygain of functionheart functionheart rhythminduced pluripotent stem cellinterestloss of functionmutantneuronal excitabilityneuropathologyneuropsychiatryneurotransmissionpatch clampsensorstem cell modelvoltagevoltage clamp
项目摘要
Calmodulin (CaM) is a ubiquitous calcium sensor, vital to immune system, heart and brain function. Mutations
within CaM result in a set of disorders known as calmodulinopathies. Patients harboring these CaM mutations
suffer from life-threatening cardiac arrhythmias, which are often accompanied by neurodevelopmental delay or
other neurological dysfunction. While CaM has numerous potential targets which may be altered in
calmodulinopathies, voltage gated calcium channels (VGCCs) stand out as likely pathogenic elements. For
CaV1-2 channels, CaM is known to preassociate with the carboxy-tail of the channel. Upon binding Ca2+, this
resident CaM initiates either of two important forms of feedback regulation; Ca2+/CaM dependent inactivation
(CDI) or Ca2+/CaM dependent facilitation (CDF). Each of these forms of channel regulation can be independently
driven by a single lobe of CaM, with CaV1.2, CaV1.3 and CaV2.1 each strongly modulated by Ca2+ binding to the
C-lobe of CaM. As the majority of calmodulinopathy mutations have thus-far impacted the CaM C-lobe, this
lobe-specific regulation implies a large impact of calmodulinopathy mutations on the regulation of these three
channels. In fact, we have previously demonstrated that calmodulinopathy mutations are capable of disrupting
the CDI of CaV1.2 channels, resulting in the long-QT phenotype seen in patients6,7. However, the effect of CaM
mutations on VGCCs other than CaV1.2 has yet to be elucidated, nor have the mechanisms underlying the
neurological phenotypes of calmodulinopathy patients been explored. As CaV1-2 channels play critical roles in
neuronal excitability, excitation-transcription coupling, and neurotransmission, we propose that they are likely
contributors to the neuropathogenesis of calmodulinopathies. We will therefore undertake a biophysical study of
the impact of calmodulinopathy mutations across the CaV1-2 channel family and evaluate the impact of these
mutations on neuronal function. In particular, we hypothesize that CaM mutations which alter the Ca2+ binding
to the C-lobe of the protein will decrease CDI in CaV1.2 and CaV1.3, and disrupt CDF in CaV2.1. To evaluate the
functional impact of these mutations, we will generate induced pluripotent stem cell derived neurons (iPSC-neurons) from calmodulinopathy patients, and elucidate a cellular phenotype correlating with the neurological
deficits of calmodulinopathy patients. Thus, we will undertake one of the first studies aimed at understanding the
impact of calmodulinopathy mutations outside the heart, expanding our understanding of the pathogenic
mechanisms underlying this disorder.
钙调蛋白 (CaM) 是一种普遍存在的钙传感器,对免疫系统、心脏和大脑功能至关重要。突变
CaM 内的异常会导致一系列称为钙调蛋白病的疾病。携带这些 CaM 突变的患者
患有危及生命的心律失常,通常伴有神经发育迟缓或
其他神经功能障碍。虽然 CaM 有许多潜在目标,但这些目标可能会在
在钙调蛋白病中,电压门控钙通道(VGCC)是可能的致病因素。为了
CaV1-2 通道,已知 CaM 与通道的羧基尾预关联。结合 Ca2+ 后,这
驻地 CaM 启动两种重要的反馈调节形式之一; Ca2+/CaM 依赖性失活
(CDI) 或 Ca2+/CaM 依赖性促进 (CDF)。这些渠道监管形式中的每一种都可以独立地进行
由 CaM 单叶驱动,CaV1.2、CaV1.3 和 CaV2.1 均受到与 Ca2+ 结合的强烈调节
CaM 的 C 叶。由于迄今为止大多数钙调蛋白病突变都影响了 CaM C 叶,因此
叶特异性调节意味着钙调蛋白病突变对这三个区域的调节有很大影响
渠道。事实上,我们之前已经证明钙调蛋白病突变能够破坏
CaV1.2 通道的 CDI,导致患者出现长 QT 表型6,7。然而,CaM 的作用
除 CaV1.2 之外的 VGCC 突变尚未阐明,也未阐明其背后的机制
钙调蛋白病患者的神经表型已被探索。 CaV1-2 通道在
神经元兴奋性、兴奋转录耦合和神经传递,我们认为它们很可能
钙调蛋白病的神经发病机制的贡献者。因此,我们将进行生物物理学研究
钙调蛋白病突变对 CaV1-2 通道家族的影响并评估这些影响
神经元功能的突变。特别是,我们假设 CaM 突变会改变 Ca2+ 结合
到蛋白质的 C 叶将降低 CaV1.2 和 CaV1.3 中的 CDI,并破坏 CaV2.1 中的 CDF。评估
为了了解这些突变的功能影响,我们将从钙调蛋白病患者中产生诱导性多能干细胞衍生神经元(iPSC-神经元),并阐明与神经系统相关的细胞表型
钙调蛋白病患者的缺陷。因此,我们将进行首批研究之一,旨在了解
心脏外钙调蛋白病突变的影响,扩大了我们对致病原因的了解
这种疾病的潜在机制。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calmodulin Mutations in Human Disease.
- DOI:10.1080/19336950.2023.2165278
- 发表时间:2023-12
- 期刊:
- 影响因子:3.3
- 作者:Hussey, John W.;Limpitikul, Worawan B.;Dick, Ivy E.
- 通讯作者:Dick, Ivy E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivy E Dick其他文献
Ivy E Dick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivy E Dick', 18)}}的其他基金
Expanding the Pathogenic Mechanisms of Calmodulinopathies
扩展钙调蛋白病的致病机制
- 批准号:
10426462 - 财政年份:2022
- 资助金额:
$ 19.31万 - 项目类别:
Chemical biological dissection of Ca2+ entry through Ca2+ channels
Ca2+通过Ca2+通道进入的化学生物学解剖
- 批准号:
9322758 - 财政年份:2016
- 资助金额:
$ 19.31万 - 项目类别:
Chemical biological dissection of Ca2+ entry through Ca2+ channels
Ca2+通过Ca2+通道进入的化学生物学解剖
- 批准号:
8739328 - 财政年份:2013
- 资助金额:
$ 19.31万 - 项目类别:
Chemical biological dissection of Ca2+ entry through Ca2+ channels
Ca2+通过Ca2+通道进入的化学生物学解剖
- 批准号:
8890901 - 财政年份:2013
- 资助金额:
$ 19.31万 - 项目类别:
相似国自然基金
β-AR调控再生心肌复极离散度参与hiPSC移植致心律失常作用的机制研究
- 批准号:82370289
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
LAMA2调控细胞力学信号致心律失常性心肌病发生的分子机制研究
- 批准号:82370325
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
利用心脏类器官模型探讨发热诱发Brugada综合征患者心律失常的机制研究
- 批准号:82300352
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
FHF1招募乙酰转移酶p300调控复极储备在心肌肥厚室性心律失常中的作用及机制
- 批准号:82360072
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
迷走神经电刺激通过AT1R/APJ/Src信号通路改善缺血性心肌病室性心律失常的机制研究
- 批准号:82300351
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
- 批准号:
10734513 - 财政年份:2023
- 资助金额:
$ 19.31万 - 项目类别:
Illuminating the function regulome of cardiac L-type Ca2+ channels in health and disease
阐明心脏 L 型 Ca2 通道在健康和疾病中的功能调节组
- 批准号:
10628916 - 财政年份:2023
- 资助金额:
$ 19.31万 - 项目类别:
Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
- 批准号:
10583283 - 财政年份:2023
- 资助金额:
$ 19.31万 - 项目类别:
Investigating the interactions of auxillary subunits with the Nav1.5 channel
研究辅助亚基与 Nav1.5 通道的相互作用
- 批准号:
10678156 - 财政年份:2023
- 资助金额:
$ 19.31万 - 项目类别:
Regulation of cardiac small-conductance calcium-activated potassium channels by PIP2
PIP2 对心脏小电导钙激活钾通道的调节
- 批准号:
10751363 - 财政年份:2023
- 资助金额:
$ 19.31万 - 项目类别: