Leaf-Derived Vascular Scaffolds (LeaVS): A multifunctional platform for skin regeneration
叶源血管支架(LeaVS):皮肤再生的多功能平台
基本信息
- 批准号:10579706
- 负责人:
- 金额:$ 44.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAllograftingAmericanAnimal ModelAnimal SourcesAnti-Inflammatory AgentsAutologousAutologous TransplantationBiomedical EngineeringBlood VesselsBurn injuryCellsCelluloseCessation of lifeCharacteristicsChemistryCicatrixClinicalDataDermalDevelopmentElementsEndotheliumEngineered skinEngineeringEpitheliumExcisionFibrinFibroblastsFibrosisFunctional RegenerationFutureGraft SurvivalGrowthHealthcareHospitalizationHumanImmunofluorescence ImmunologicImmunohistochemistryImpairmentImplantIn VitroInflammationInflammatoryInflammatory ResponseInjuryLaboratoriesLegal patentMacrophageMechanicsModelingMorphologyNatural regenerationOperative Surgical ProceduresOutcomePatientsPersonsPhenotypePlant LeavesPlantsProliferatingProtocols documentationPublishingRoleSideSiteSkinSkin SubstitutesSkin TissueSkin graftSkin injuryStratified EpitheliumSurfaceTestingThickTimeTissue EngineeringTissue constructsTissuesTraumatic injuryUnited StatesVaricose UlcerVascular Endothelial CellVascular PlantVascularizationVenous Pressure levelVisualizationWound modelsXenograft procedureanalogbiocompatible scaffoldburn therapychemokinechronic wounddecubitus ulcerdesignepithelial woundimprovedin vitro regenerationin vivoin vivo Modelinflammatory modulationinnovationkeratinocyteloss of functionmechanical propertiesmouse modelneovascularizationneutrophilnovelpreservationregenerativescaffoldskin barrierskin damageskin regenerationstandard of caresuccessthird degree burntissue regenerationtraumatic woundvascular bedwound
项目摘要
Each year, 3 - 4 million people in the United States require treatment for traumatic injuries, venous ulcers,
and pressure sores. Current solutions, including autologous skin grafts and bioengineered skin substitutes, have
shown limited success due to an inability to overcome critical limitations including prolonged revascularization
rates, impaired tissue ingrowth and delayed reepithelialization at the wound site. As such, there remains a
significant unmet need to develop implantable dermal scaffolds that contain vascular networks to promote rapid
vascularization, downregulate inflammation and maximize functional skin regeneration. Our laboratory
developed a novel decellularized leaf-derived vascular scaffold (LeaVS) with pre-existing hierarchical networks
of branched, perfusable channels that remain patent and perfusable. These biocompatible scaffolds can be
functionalized to support growth of a contiguous layers of keratinocytes with characteristic cobblestone
morphology and progressive epithelial stratification, as well as fibroblast attachment and proliferation. From
these observations, we hypothesize that LeaVS can be engineered to enhance the rate of graft
neovascularization and improve the rate of pro-regenerative endothelial, dermal and epithelial tissue
formation in a full thickness wound model. To systemically test our hypothesis, we propose the following
specific aims:
In our first aim, we will functionalize LeaVS and we will determine surface chemistries that maximize
endothelialization and vascular budding within LeaVS. Then, we will investigate the LeaVS endothelialization
strategy that maximizes the rate of epithelialization and neodermal formation on the scaffolds.
In our second aim, we will modulate the inflammatory responses to decellularized leaf scaffolds by
selectively removing extravascular elements from the LeaVS. Partially digested scaffolds will be cultured with
neutrophils and macrophages to assess the LeaVS degradation strategy that minimizes inflammatory responses.
In our final aim, we will determine the synergistic roles of LeaVS vascular network and inflammatory
modulation on maximizing the regeneration of functional vascularized skin tissue in a full thickness wound in a
small animal model. We anticipate that the results of this study will provide the first in vivo data demonstrating
that functionalized LeaVS improve the rate of functional skin regeneration and scar reduction for the treatment
of skin injures.
Our innovative approach describes the first efforts to create a tissue engineered skin substitute on
functionalized leaf-based vascular scaffolds (LeaVS). The findings from this study will enable the future
development of an implantable, plant-derived scaffold to facilitate the rapid regeneration of injury skin tissue and
to enable to a new standard of care for the treatment of traumatic wounds, venous ulcers and pressure sores.
每年,美国有 3 - 400 万人需要治疗外伤、静脉溃疡、
和压疮。目前的解决方案,包括自体皮肤移植和生物工程皮肤替代品,已经
由于无法克服包括长期血运重建在内的关键限制,显示的成功有限
率、组织向内生长受损以及伤口部位的上皮化延迟。因此,仍然存在一个
开发包含血管网络的可植入真皮支架的重大未满足需求,以促进快速
血管化、下调炎症并最大限度地提高功能性皮肤再生。我们的实验室
开发了一种新型脱细胞叶源性血管支架(LeaVS),具有预先存在的分层网络
保持专利和可灌注的分支、可灌注通道。这些生物相容性支架可以
功能化以支持具有特征鹅卵石的连续角质形成细胞层的生长
形态和进行性上皮分层,以及成纤维细胞附着和增殖。从
根据这些观察结果,我们假设 LeaVS 可以被设计来提高移植率
新血管形成并提高内皮、真皮和上皮组织的促再生率
全层伤口模型中的形成。为了系统地检验我们的假设,我们提出以下建议
具体目标:
在我们的第一个目标中,我们将对 LeaVS 进行功能化,并且我们将确定能够最大化
LeaVS 内的内皮化和血管出芽。然后,我们将研究 LeaVS 内皮化
最大限度地提高支架上上皮化和新真皮形成率的策略。
在我们的第二个目标中,我们将通过以下方式调节对脱细胞叶支架的炎症反应:
选择性地从 LeaVS 中去除血管外成分。部分消化的支架将用
中性粒细胞和巨噬细胞来评估 LeaVS 降解策略,最大限度地减少炎症反应。
在我们的最终目标中,我们将确定 LeaVS 血管网络和炎症的协同作用
最大限度地调节全层伤口中功能性血管化皮肤组织的再生
小动物模型。我们预计这项研究的结果将提供第一个体内数据证明
功能化 LeaVS 可提高功能性皮肤再生率并减少治疗中的疤痕
的皮肤损伤。
我们的创新方法描述了在皮肤上创建组织工程皮肤替代品的首次努力
功能化叶基血管支架(LeaVS)。这项研究的结果将使未来
开发可植入的植物源支架,以促进损伤皮肤组织的快速再生
为治疗创伤性伤口、静脉性溃疡和压疮提供新的护理标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE D. PINS其他文献
GEORGE D. PINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE D. PINS', 18)}}的其他基金
Designing Microfabricated Basal Lamina Analogs to Enhance Skin Regeneration
设计微加工基底层类似物以增强皮肤再生
- 批准号:
7252861 - 财政年份:2007
- 资助金额:
$ 44.79万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Patient-Derived Kidney Organoids For Modeling Kidney Injury
用于肾损伤建模的患者肾脏类器官
- 批准号:
10663719 - 财政年份:2023
- 资助金额:
$ 44.79万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 44.79万 - 项目类别:
Role of antigen-specific T cells in immunotherapy-associated acute interstitial nephritis and kidney allograft rejection
抗原特异性 T 细胞在免疫治疗相关急性间质性肾炎和肾同种异体移植排斥中的作用
- 批准号:
10351987 - 财政年份:2022
- 资助金额:
$ 44.79万 - 项目类别:
Assessment of Biomarker Guided CNI Substitution in Kidney Transplantation
肾移植中生物标志物引导的 CNI 替代评估
- 批准号:
10654057 - 财政年份:2022
- 资助金额:
$ 44.79万 - 项目类别:
Role of antigen-specific T cells in immunotherapy-associated acute interstitial nephritis and kidney allograft rejection
抗原特异性 T 细胞在免疫治疗相关急性间质性肾炎和肾同种异体移植排斥中的作用
- 批准号:
10548204 - 财政年份:2022
- 资助金额:
$ 44.79万 - 项目类别: