Leveraging cytoplasmic transcription to develop self-amplifying DNA vaccines
利用细胞质转录开发自我扩增 DNA 疫苗
基本信息
- 批准号:10579667
- 负责人:
- 金额:$ 20.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAddressAnimalsAntigensArchitectureBacteriophage T7Biological AssayBiologyBiomanufacturingCOVID-19COVID-19 pandemicCOVID-19 vaccineCell Culture TechniquesCell NucleusCell SurvivalCellsClinicalCodeCold ChainsComplexCountryCytoplasmDNADNA VaccinesDNA amplificationDNA cassetteDNA deliveryDataDevelopmentEmergency SituationEmerging Communicable DiseasesEnsureEnzymesEventFeedbackFlow CytometryFluorescent in Situ HybridizationFreezingFrequenciesFutureGene AmplificationGene ExpressionGenerationsGenesGeneticGenetic TranscriptionGenomicsHealthcare SystemsHourHumanImmune responseIncentivesIndustryInferiorInfrastructureInvestigationLearningLifeLocationMeasuresMessenger RNAMethodsNucleic Acid VaccinesPlasmidsProcessProductionProgram DevelopmentPropertyRNARNA amplificationRNA vaccineResearch PersonnelSafetySpeedStructureSystemT7 RNA polymeraseTechnologyTemperatureTestingTimeTranscription InitiationTransfectionTranslationsVaccine DesignVaccinesVariantViral GenesVirusdesigndesign and constructiondesign,build,testdosageexperimental studyexpression vectorfeasibility testingfuture epidemicimmunogenicimmunogenicityimprovedinnovationinterestmRNA cappingmanufacturemanufacturing facilitymanufacturing processnext generationnovelnovel vaccinesplasmid DNApreservationpreventpromoterscaffoldsingle moleculesocioeconomicssuccesssynthetic biologytrendvaccine accessvaccine candidatevaccine developmentvaccine platformvectorvector vaccine
项目摘要
Project Summary
The unprecedented speed of COVID-19 vaccine development has demonstrated the value of vaccine platforms.
In particular, mRNA vaccines proved surprisingly successful at eliciting a strong immune response while having
a remarkable safety profile considering the novelty of this system. Just as important are the remarkable speed
and scale of their production. Despite their spectacular success, mRNA vaccines suffer from major limitations.
mRNA is an inherently unstable molecule. One consequence of this property is that mRNA vaccines need to be
stored in freezers and their shelf-life is measured in hours after they have been thawed. These storage
requirements are considered difficult to ensure even in countries with developed healthcare systems and are
extremely problematic in many other parts of the world. The second limitation of mRNA vaccines is that their
production is unlike any other biomanufacturing process. As a result, it is limited by a critical lack of infrastructure
and expertise. The COVID-19 mRNA vaccines provided an incentive to imagine the next generation of nucleic
acid vaccines that would be easier to manufacture at scale and distribute to healthcare systems throughout the
world.
This proposal hypothesizes that a DNA-based vaccine could enable the design and deployment of safe and
effective vaccines that would be faster, easier, and cheaper to manufacture at scale. The production of clinical-
grade DNA relies on biomanufacturing processes that are some of the simplest, fastest, and most inexpensive
processes in the industry. However, DNA vaccines have failed to elicit a protective immune response so far
because only a small fraction of the DNA molecules entering a cell are transported to the nucleus where they
can be transcribed.
In this R21, researchers will test the feasibility of developing a new generation of DNA vaccines by applying
methods from synthetic biology to introduce genetic circuits allowing the expression of the antigen to take place
in the cytoplasm. Self-amplifying DNA vaccines will include several genes of viral origins that will transcribe the
antigenic sequences from plasmids located in the cell cytoplasm. In addition, these vectors will include additional
enzymes to modify mRNA molecules to increase their stability and translation efficiency. By introducing several
levels of amplification, the expression of the antigen is expected to be several orders of magnitude higher than
what can be achieved with traditional DNA vaccines. The project will proceed through eight iterations of the
design-build-test-learn cycle to rationally improve vaccine designs using gene expression data in cell culture.
If successful, future studies will test the platform compatibility with a broad range of antigens, optimize the
delivery of DNA-based vaccines, and analyze the safety and efficacy of candidate vaccines in animal studies.
项目摘要
COVID-19疫苗开发的前所未有的速度证明了疫苗平台的价值。
特别是,事实证明,mRNA疫苗在引起强烈的免疫反应方面取得了惊人的成功
考虑到该系统的新颖性,一个显着的安全性。同样重要的速度也很重要
和他们的生产规模。尽管取得了惊人的成功,但mRNA疫苗仍受到重大局限性。
mRNA是一种固有的不稳定分子。该特性的结果之一是mRNA疫苗需要为
存放在冰柜中,其保质期在解冻后数小时在数小时内测量。这些存储
即使在具有发达医疗保健系统的国家,也很难确保要求
在世界许多其他地区都非常有问题。 mRNA疫苗的第二个局限性是它们
生产与任何其他生物制造过程不同。结果,它受到基础架构的严重缺乏的限制
和专业知识。 COVID-19 mRNA疫苗提供了一种想象下一代核的动力
酸性疫苗会更容易按比例制造并在整个整个整个医疗保健系统中分发
世界。
该提案假设基于DNA的疫苗可以使安全和部署
有效的疫苗将更快,更容易,更便宜地制造。临床的产生
级DNA依赖于最简单,最快,最便宜的生物制造过程
行业的过程。但是,DNA疫苗迄今未能引起保护性免疫反应
因为只有一小部分进入细胞的DNA分子被转运到核中
可以转录。
在此R21中,研究人员将通过应用来测试开发新一代DNA疫苗的可行性
合成生物学的方法引入遗传回路,允许进行抗原的表达
在细胞质中。自我放大的DNA疫苗将包括几种病毒起源的基因,这些基因将转录
位于细胞质中的质粒的抗原序列。此外,这些向量将包括其他
酶修饰mRNA分子以提高其稳定性和翻译效率。通过介绍几个
放大水平,抗原的表达预计将高几个数量级高于
传统的DNA疫苗可以实现的目标。该项目将进行八个迭代
设计建造测试的研究周期使用细胞培养中的基因表达数据合理地改善疫苗设计。
如果成功,未来的研究将测试平台与广泛抗原的兼容性,优化
递送基于DNA的疫苗,并分析候选疫苗在动物研究中的安全性和功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean M Peccoud其他文献
Jean M Peccoud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean M Peccoud', 18)}}的其他基金
Supplement: Development of a technology to certify engineered DNA molecules
补充:开发验证工程 DNA 分子的技术
- 批准号:
10732196 - 财政年份:2022
- 资助金额:
$ 20.77万 - 项目类别:
Development of a technology to certify engineered DNA molecules
开发验证工程 DNA 分子的技术
- 批准号:
10509988 - 财政年份:2022
- 资助金额:
$ 20.77万 - 项目类别:
Development of a technology to certify engineered DNA molecules
开发验证工程 DNA 分子的技术
- 批准号:
10704153 - 财政年份:2022
- 资助金额:
$ 20.77万 - 项目类别:
DISTRIBUTED SIMULATION AND OPTIMIZATION OF GENE NETWORK MODELS
基因网络模型的分布式仿真与优化
- 批准号:
8171879 - 财政年份:2010
- 资助金额:
$ 20.77万 - 项目类别:
DISTRIBUTED SIMULATION AND OPTIMIZATION OF GENE NETWORK MODELS
基因网络模型的分布式仿真与优化
- 批准号:
7956340 - 财政年份:2009
- 资助金额:
$ 20.77万 - 项目类别:
Stochastic models of cell cycle regulation in eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
9059125 - 财政年份:2006
- 资助金额:
$ 20.77万 - 项目类别:
Stochastic models of cell cycle regulation in eukaryotes
真核生物细胞周期调控的随机模型
- 批准号:
9247333 - 财政年份:2006
- 资助金额:
$ 20.77万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Establishment of a Bat Resource for Infectious Disease Research
建立用于传染病研究的蝙蝠资源
- 批准号:
10495114 - 财政年份:2023
- 资助金额:
$ 20.77万 - 项目类别:
Precision Glycoengineering of an HCV Envelope-Based Nanoparticle Vaccine
HCV 包膜纳米颗粒疫苗的精密糖工程
- 批准号:
10759994 - 财政年份:2023
- 资助金额:
$ 20.77万 - 项目类别:
Resources, Workforce Development, and Animal Models for the Rutgers RBL
罗格斯大学 RBL 的资源、劳动力发展和动物模型
- 批准号:
10793863 - 财政年份:2023
- 资助金额:
$ 20.77万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 20.77万 - 项目类别:
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 20.77万 - 项目类别: