Elucidating phenotype and etiology of substance use disorders via integrative analysis of multi-dimensional datasets

通过多维数据集的综合分析阐明物质使用障碍的表型和病因

基本信息

  • 批准号:
    10579580
  • 负责人:
  • 金额:
    $ 46.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Substance use disorders (SUDs) have heterogeneous clinical manifestations and environmental and genetic risk factors intertwined etiology, demanding phenotype refinement and etiology elucidation for precise prevention, diagnosis, and treatment. Many genome-wide association studies (GWASs) have been carried out in recent years, aiming to discover the genetic risk factors of various forms of SUDs, such as cocaine and opioid use disorders. The high level of heterogeneity in both clinical presentations and etiology of SUDs compromises the effort for their genetic association discovery. As a result, the identified associations only explain a very small portion of the estimated heritability in twin-based studies, implying that the majority is still in the wild. In existing association studies, a heterogeneous composite trait (e.g., cocaine dependence diagnosis and diagnostic criteria count) was often used as the outcome variable and the specific set of phenotypes associated genetic variants is unclarified. Furthermore, the lack of mechanistic understanding of the identified associations hampers the translation of these discoveries into actionable targets to improve the disease management. In response to these challenges, novel machine learning methods will be developed enabling the integrative analysis of data from multiple dimensions, including phenotype, environment, genotype, and functional genomics. The developed methods will be employed to mine a large dataset aggregated for genetic study of SUDs and data available from multiple repositories, such as dbGap, UKBiobank, Roadmap, ENCODE, and NCBI GEO, aiming at 1) deriving severity indices of SUDs that have maximum heritability estimate, 2) identifying novel genetic risk factors for SUDs, 3) unraveling the association between heterogeneous clinical presentations and genetic variations in candidate genomic regions, and 4) elucidating the functional impact of genetic variants associated with SUDs and producing actionable findings. In Aim #1, a machine learning method for deriving severity indices by heritable component analysis taking into account gene-environment interplay will be developed and used to derive severity indices of SUDs, followed by GWASs. In Aim #2, a multi-view clustering framework that accounts for gene- environment interplay will be developed and used to elucidate SUD phenotypes associated with genetic variations in candidate genomic regions, followed by GWASs. In Aim #3, deep neural networks with novel architectures will be trained under a novel multi-task learning framework to predict functional genomic events in varying cell types from a wide range of brain regions and used to elucidate the functional impact of the genetic variants discovered by GWASs.
项目概要 物质使用障碍 (SUD) 具有异质性的临床表现以及环境和遗传风险 病因学因素相互交织,需要表型细化和病因学阐明以进行精确预防, 诊断、治疗。近年来开展了许多全基因组关联研究(GWAS), 旨在发现各种形式 SUD 的遗传风险因素,例如可卡因和阿片类药物使用障碍。 SUD 的临床表现和病因学的高度异质性损害了治疗的努力 他们的遗传关联发现。因此,所确定的关联仅解释了一小部分 基于双胞胎的研究中估计的遗传力,这意味着大多数仍处于野生状态。在现有的 关联研究,异质复合特征(例如可卡因依赖诊断和诊断标准 计数)经常被用作结果变量,与遗传变异相关的一组特定表型是 未澄清。此外,缺乏对已确定的关联的机械理解阻碍了 将这些发现转化为可操作的目标,以改善疾病管理。针对这些 挑战,将开发新颖的机器学习方法,从而能够对来自的数据进行综合分析 多个维度,包括表型、环境、基因型和功能基因组学。所开发的 将采用方法来挖掘用于 SUD 遗传研究的大型数据集和可从 多个存储库,例如 dbGap、UKBiobank、Roadmap、ENCODE 和 NCBI GEO,旨在 1) 导出 具有最大遗传力估计的 SUD 的严重性指数,2) 识别新的遗传风险因素 SUD,3)揭示异质性临床表现与遗传变异之间的关联 候选基因组区域,4) 阐明与 SUD 相关的遗传变异的功能影响和 产生可操作的发现。在目标#1中,一种通过遗传推导严重性指数的机器学习方法 将开发考虑基因与环境相互作用的成分分析并用于得出严重程度 SUD 指数,其次是 GWAS。在目标 #2 中,一个多视图聚类框架可以解释基因- 将开发环境相互作用并用于阐明与遗传变异相关的 SUD 表型 候选基因组区域,其次是 GWAS。在目标#3中,具有新颖架构的深度神经网络 将在新型多任务学习框架下接受训练,以预测不同细胞中的功能基因组事件 来自广泛大脑区域的类型,用于阐明遗传变异的功能影响 由 GWAS 发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JIANGWEN SUN其他文献

JIANGWEN SUN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

“共享建筑学”的时空要素及表达体系研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
  • 批准号:
    51778419
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
宜居环境的整体建筑学研究
  • 批准号:
    51278108
  • 批准年份:
    2012
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
  • 批准号:
    20801051
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
  • 批准号:
    10735778
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
  • 批准号:
    10722368
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
microRNA-Regulated Mechanisms Essential for Structural Plasticity of Drosophila Glutamatergic Synapses
microRNA 调控机制对于果蝇谷氨酸突触的结构可塑性至关重要
  • 批准号:
    10792326
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
  • 批准号:
    10679903
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
  • 批准号:
    10664707
  • 财政年份:
    2023
  • 资助金额:
    $ 46.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了