Allostery and voltage sensing of membrane proteins

膜蛋白的变构和电压传感

基本信息

  • 批准号:
    8457601
  • 负责人:
  • 金额:
    $ 4.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-27 至 2015-09-26
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project has the goal of understanding the allosteric modulation, through voltage sensing, of voltage-gated ion channels and GPCRs has on their function. Allosteric modulation of voltage-gated ion channels occurs via domains not directly needed for voltage sensing and gating, that is, the first three transmembrane domains of each monomer, and the linker attaching this domain to the remainder of the protein. Allosteric modulation of GPCR activity occurs through voltage-sensing. Engineered versions of the Shaker potassium channel and the muscarinic acetylcholine receptor type 2 will be expressed in Xenopus oocytes and probed using electrophysiological and fluorescent techniques. The aims are to understand the role the linker between the third and fourth transmembrane domains of voltage-gated potassium channels plays in its function, to understand the movements that occur in the second and third transmembrane domains upon changes in membrane potential, independent of the movement of the primary voltage sensor in the fourth transmembrane domain, and to understand the movements that occur in response to changes in membrane potential in GPCRs. The long-term objectives of this project are to advance our understanding of potential novel targets for therapeutics targeted to modulate the voltage-sensing properties of voltage-gated ion channels and GPCRs. As these membrane proteins are already successful targets for many therapies, improved understanding of how to modulate their function should lead towards improvements of human health. PUBLIC HEALTH RELEVANCE: Voltage-gated ion channels and GPCRs are voltage-sensitive membrane proteins; their proper functioning is crucial for appropriate signaling between cells, for the activity of the brain, and for the beating of the heart. Understanding the movements these membrane proteins make in response to electrical changes, and which parts of the proteins are necessary for the protein to function correctly, will greatly improve the ability to produce novel therapies and drugs that target these proteins.
描述(由申请人提供):该项目的目标是通过电压传感了解电压门控离子通道和 GPCR 的变构调制对其功能的影响。电压门控离子通道的变构调节通过电压传感和门控不直接需要的结构域发生,即每个单体的前三​​个跨膜结构域,以及将该结构域连接到蛋白质其余部分的连接体。 GPCR 活性的变构调节通过电压感应发生。 Shaker 钾通道和 2 型毒蕈碱乙酰胆碱受体的工程版本将在非洲爪蟾卵母细胞中表达,并使用电生理学和荧光技术进行探测。目的是了解电压门控钾通道第三和第四跨膜域之间的连接器在其功能中所起的作用,了解在膜电位变化时第二和第三跨膜域发生的运动,与运动无关的第四跨膜域中的初级电压传感器,并了解响应 GPCR 中膜电位变化而发生的运动。该项目的长期目标是增进我们对调节电压门控离子通道和 GPCR 的电压传感特性的潜在新治疗靶点的理解。由于这些膜蛋白已经成为许多疗法的成功靶标,因此更好地了解如何调节其功能应该有助于改善人类健康。 公共健康相关性:电压门控离子通道和 GPCR 是电压敏感膜蛋白;它们的正常功能对于细胞之间的适当信号传递、大脑活动和心脏跳动至关重要。了解这些膜蛋白响应电变化而做出的运动,以及蛋白质的哪些部分对于蛋白质的正常功能是必需的,将大大提高生产针对这些蛋白质的新疗法和药物的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Priest其他文献

Michael Priest的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Priest', 18)}}的其他基金

Allostery and voltage sensing of membrane proteins
膜蛋白的变构和电压传感
  • 批准号:
    8721494
  • 财政年份:
    2012
  • 资助金额:
    $ 4.22万
  • 项目类别:
Allostery and voltage sensing of membrane proteins
膜蛋白的变构和电压传感
  • 批准号:
    8580181
  • 财政年份:
    2012
  • 资助金额:
    $ 4.22万
  • 项目类别:

相似国自然基金

抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
  • 批准号:
    32370941
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
  • 批准号:
    82304698
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
  • 批准号:
    62302277
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
  • 批准号:
    22304062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
  • 批准号:
    10752555
  • 财政年份:
    2024
  • 资助金额:
    $ 4.22万
  • 项目类别:
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
  • 批准号:
    10726763
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
Domain- and protein-selective BET mechanisms in cocaine-seeking behaviors
可卡因寻求行为中的结构域和蛋白质选择性 BET 机制
  • 批准号:
    10714343
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
Mapping brain-wide opioid actions by profiling neuronal activities and in vivo cellular target engagement
通过分析神经元活动和体内细胞靶标参与来绘制全脑阿片类药物作用
  • 批准号:
    10775623
  • 财政年份:
    2023
  • 资助金额:
    $ 4.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了