"The molecular mechanisms of asymmetric cell division in mycobacteria."
“分枝杆菌不对称细胞分裂的分子机制。”
基本信息
- 批准号:10612036
- 负责人:
- 金额:$ 40.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-12 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic TherapyAntibiotic susceptibilityAntibioticsBacteriaBacterial InfectionsBehaviorBiochemicalCause of DeathCell SurvivalCell divisionCellsCharacteristicsCommunicationComplexCoupledCytokinesisDataDaughterDiseaseDrug DesignDrug ToleranceEscherichia coliEventExperimental GeneticsFrequenciesFutureGene DeletionGenesGenus MycobacteriumGoalsGrowthHeterogeneityImaging TechniquesInfectionInfectious AgentInterruptionInterventionLeadMapsMediatingMethodsModelingMolecularMultiprotein ComplexesMycobacterium InfectionsMycobacterium tuberculosisNamesOrganismPeptidoglycanPhenotypePhosphorylationPhosphotransferasesPopulationPredispositionProcessProteinsPublishingRegulatory PathwayResistanceRouteSeriesSiteSourceTestingTherapeuticTimeTuberculosisTyrosineWorkcell growthchemotherapydesignexperimental studygene functionhuman pathogeninnovationmutantmycobacterialnew growthpathogenic bacteriapreventprotein protein interactiontuberculosis treatment
项目摘要
Abstract
Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb), is now the leading cause
of death by a single infectious agent. One reason for this is that subpopulations of Mtb cells can survive even
lengthy chemotherapy, preventing cure of disease. These surviving cells are phenotypically tolerant, but not
genetically resistant, to antibiotic therapy. Thus, the ability of genetically identical bacteria to display different
phenotypes is a significant obstacle for the treatment of TB. A better understanding of the molecular
mechanisms underlying this phenomenon could lead to therapeutic advances for TB and other mycobacterial
infections. Much of the heterogeneity begins at mycobacterial cell division. Every time a mycobacterium
divides it produces daughters with different characteristics. We have recently discovered that this process is
genetically encoded. Deleting a single gene, which we have named lamA, leads to cells that grow and divide
more symmetrically and are more uniformly susceptible to certain antibiotics. The function of LamA and how it
mediates asymmetric growth and division are unknown. Here, we propose to investigate the molecular
function of LamA. Our published and preliminary data show that LamA localizes to the site of division, where it
inhibits the maturation of the new growth poles. In addition, we have connected LamA to the phosphorylation
state of an essential peptidoglycan synthase, and have discovered that its own localization is regulated by
phosphorylation. This leads to our hypothesis that LamA dynamically interrupts an unknown communication
relay between the multi-protein complexes that accomplish division and elongation, in a phosphorylation-
dependent manner. To test this model, we propose the following aims: (1) define the communication relay
between the division and elongation complexes; and, (2) dynamically map the regulatory events that lead to
asymmetry. Our innovation is to study a mycobacterial-specific protein that creates heterogeneity in a
genetically identical population. We will do so by leveraging our expertise in advanced imaging techniques in
combination with more traditional methods. Successful completion of these aims will lead to hypotheses about
the function of LamA that can be tested with molecular and biochemical approaches. Further, our results will
advance our understanding of the molecular basis of cell-division mediated heterogeneity, which has far-
reaching consequences for the treatment of TB. For example, identifying the molecular mechanism(s) that
leads to subpopulations of bacteria better able to survive antibiotic therapy will allow us to design drug
strategies that target heterogeneity. Such interventions could treat TB more quickly, something that would
greatly help reduce the global burden of TB disease.
抽象的
结核病 (TB) 是一种由结核分枝杆菌 (Mtb) 引起的细菌感染,现已成为主要原因
单一传染源导致的死亡。原因之一是 Mtb 细胞亚群甚至可以存活
漫长的化疗,阻碍了疾病的治愈。这些存活的细胞具有表型耐受性,但不耐受
对抗生素治疗有遗传耐药性。因此,基因相同的细菌表现出不同的能力
表型是结核病治疗的重大障碍。更好地了解分子
这种现象背后的机制可能会导致结核病和其他分枝杆菌的治疗进展
感染。大部分异质性始于分枝杆菌细胞分裂。每次出现分枝杆菌
分裂产生了具有不同特征的女儿。我们最近发现这个过程是
基因编码的。删除单个基因(我们将其命名为 lamA)会导致细胞生长和分裂
更加对称,并且对某些抗生素更加敏感。 LamA 的功能及其作用
介导不对称生长和分裂尚不清楚。在这里,我们建议研究分子
拉玛的功能。我们公布的初步数据表明 LamA 定位于分裂部位,在那里它
抑制新生长极的成熟。此外,我们已将 LamA 连接到磷酸化
一种必需的肽聚糖合酶的状态,并发现其自身的定位受
磷酸化。这导致我们假设 LamA 动态中断未知通信
在完成分裂和伸长的多蛋白复合物之间进行中继,以磷酸化-
依赖方式。为了测试这个模型,我们提出以下目标:(1)定义通信中继
分裂复合体和伸长复合体之间; (2) 动态映射导致的监管事件
不对称。我们的创新是研究一种分枝杆菌特异性蛋白质,该蛋白质在
基因相同的群体。我们将利用我们在先进成像技术方面的专业知识来做到这一点
与更传统的方法相结合。成功完成这些目标将导致以下假设
LamA 的功能可以通过分子和生化方法进行测试。此外,我们的结果将
增进了我们对细胞分裂介导的异质性的分子基础的理解,这已经远
达到结核病治疗的效果。例如,确定分子机制
导致细菌亚群能够更好地在抗生素治疗中生存,这将使我们能够设计药物
针对异质性的策略。此类干预措施可以更快地治疗结核病,
极大地有助于减轻全球结核病负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Hesper Rego其他文献
Elizabeth Hesper Rego的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Hesper Rego', 18)}}的其他基金
"The molecular mechanisms of asymmetric cell division in mycobacteria."
“分枝杆菌不对称细胞分裂的分子机制。”
- 批准号:
10163125 - 财政年份:2020
- 资助金额:
$ 40.64万 - 项目类别:
"The molecular mechanisms of asymmetric cell division in mycobacteria."
“分枝杆菌不对称细胞分裂的分子机制。”
- 批准号:
10401858 - 财政年份:2020
- 资助金额:
$ 40.64万 - 项目类别:
相似国自然基金
四面体框架核酸载抗生素提高耐药菌对抗生素敏感性的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗炎药保泰松降低细菌对抗生素敏感性的作用及机制研究
- 批准号:82204466
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
mprF突变介导MRSA对β-内酰胺类抗生素敏感性变化机制研究
- 批准号:82172308
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
盐酸卞达明恢复耐药细菌对四环素类抗生素敏感性的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
谷氨酸提高耐药菌对抗生素敏感性的分子机制研究
- 批准号:31700119
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Refined Murine Model of Post-sepsis Cognitive Impairment for Investigating Mitochondrial Abnormalities and Human ApoE4 Gene Polymorphisms
用于研究线粒体异常和人类 ApoE4 基因多态性的精制脓毒症后认知障碍小鼠模型
- 批准号:
10646579 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Molecular Mechanisms of Pseudomonas aeruginosa Antibiotic Persistence in Monocultures and Microbial Communities
单一栽培和微生物群落中铜绿假单胞菌抗生素持久性的分子机制
- 批准号:
10749974 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Bacteriophage as a predictive biomarker in chronic Pseudomonas airway disease
噬菌体作为慢性假单胞菌气道疾病的预测生物标志物
- 批准号:
10723956 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
The joint environment and periprosthetic joint infection
关节环境与假体周围感染
- 批准号:
10744580 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别:
Antibiotic tolerance as a stepping stone to tuberculosis drug-resistance
抗生素耐受性是结核病耐药性的垫脚石
- 批准号:
10592979 - 财政年份:2023
- 资助金额:
$ 40.64万 - 项目类别: