A New Paradigm to Treat Bleeding by Augmenting Hemostasis via Microscale Electrical Fields
通过微尺度电场增强止血来治疗出血的新范例
基本信息
- 批准号:10612469
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdhesivesAdverse effectsAppearanceBandageBasic ScienceBehaviorBiologicalBiological ProductsBiological SciencesBiomedical EngineeringBloodBlood VesselsBlood coagulationCell Adhesion MoleculesCellsChemical-Induced ChangeChemicalsChemistryClinicalCommunicationDataDepositionDevelopment PlansDevice or Instrument DevelopmentDevicesDiameterDiseaseElectrical EngineeringElectronicsElectrosurgeryEndothelial CellsEndotheliumEngineeringEnvironmentExposure toFibrinFibrinogenFosteringFoundationsFutureGenerationsGeometryGoalsHealthHematological DiseaseHematologyHemorrhageHemostatic AgentsHemostatic functionHumanImmuneIn VitroInterventionInvestigationKineticsLaboratoriesLeadLiteratureMeasuresMechanicsMedicalMentorshipMethodsMicrofluidicsMicroscopyModalityModelingMorbidity - disease rateNatureOperative Surgical ProceduresPaperPatientsPhysiciansPhysiologyPolymersPublic HealthPublishingReactive Oxygen SpeciesResearchResourcesScientistTechniquesTemperatureTherapeuticThrombinThromboplastinTimeTissue PreservationTissuesTrainingTraumaUp-RegulationVascular EndotheliumWorkcost effectivedesignelectric fieldimprovedin vitro Modelin vivoin vivo Modelinfection riskinnovationinsightmetermicroelectronicsmicrosystemsmortalitynanofabricationnew technologynovelnovel strategiespharmacologicpolymerizationresponsetargeted treatmenttherapy developmenttoolvoltagewound
项目摘要
PROJECT SUMMARY/ABSTRACT
Hemorrhage is a common occurrence inside and outside of the clinical environment. Although advancements
have been made to enable rapid hemostatic control, hemorrhage is still a significant contributor to morbidity and
mortality. Current approaches to achieve hemostatic control focus on pharmacological and electrothermal means
of intervention. These methods of addressing hemorrhage are effective; however, they are not broadly applicable
and are associated with numerous adverse effects. The pharmacological methods rely on the use of biologic
agents that present the risks of infection and immune dysregulation. Electrothermal means of addressing
hemorrhage, such as electrocauterization often result in compromised tissue appearance and function. To
address this need for improved hemostatic agents, we propose the use of microscale electrical fields to
accelerate hemostasis, which has been demonstrated by our previous work. A fundamental question pertains to
the mechanistic underpinnings of microscale-electrical-field hemostatic augmentation. The central hypothesis is
that tunable (low voltage) electrical fields catalyze pro-hemostatic fibrin deposition and endothelial mechanics.
This hypothesis will be investigated by the following proposed specific aims. Aim 1 will establish the mechanism
underlying microscale-electrical-field hemostatic augmentation. The objective is to understand how microscale
electrical fields target hemostasis in comparison to current hemostatic agents. Aim 2 will use novel in vitro
models of blood vessels to characterize how blood vessel cells respond to electrical fields in the context of
bleeding. The trainee will master a wide range of engineering, chemistry, and biological techniques, including
nanofabrication, microsystem engineering using microfluidics, and advanced microscopy techniques. The
laboratory in which the proposed work will be conducted is the ideal environment for this research trainee as it
has demonstrated an abundance of resources and numerous opportunities for cross-training in fields ranging
from life sciences to engineering all of which will foster the well-roundedness of the trainee. The proposed
research will provide insight into a novel approach to accelerating hemostasis using microscale electrical fields.
This research will provide a strong foundation for future medical microsystem- based strategies for evaluating
disease and treatment options. The training plan proposed to accomplish these goals has been specifically
designed to provide the PI with the environment, training, and mentorship necessary to succeed as a physician-
scientist-engineer.
项目摘要/摘要
出血是临床环境内外的常见发生。虽然进步
已经实现了快速的止血控制,出血仍然是发病率和
死亡。目前的方法以实现止血控制关注药理学和电热均值
干预。这些解决出血的方法是有效的。但是,它们不是广泛适用的
并与许多不利影响有关。药理学方法依赖于生物学的使用
出现感染和免疫失调风险的药物。电热的方法
出血,例如电载体,通常会导致组织外观和功能受损。到
解决了改善止血剂的需求,我们建议使用微观电场
加速止血,这是我们以前的工作证明的。一个基本问题与
显微镜 - 电场止血增强的机械基础。中心假设是
可调节的(低压)电场催化促纤维蛋白沉积和内皮力学。
该假设将通过以下提出的特定目的进行研究。 AIM 1将建立机制
基础显微镜 - 电场止血增强。目的是了解微观
与电流止血剂相比,电场靶向止血。 AIM 2将在体外使用小说
血管模型以表征血管细胞如何在
流血。学员将掌握广泛的工程,化学和生物技术,包括
纳米机器化,使用微流体和高级显微镜技术的微系统工程。这
将进行拟议工作的实验室是该研究学员的理想环境
已经证明了丰富的资源和许多在范围内交叉训练的机会
从生命科学到工程,所有这些都将促进学员的全面性。提议
研究将提供对使用微观电场加速止血的新方法的见解。
这项研究将为未来的医学生理系统评估策略提供良好的基础
疾病和治疗选择。为实现这些目标而提出的培训计划是专门的
旨在为PI提供成功的环境,培训和指导,以成功作为医生 -
科学家工程师。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hidden behind thromboinflammation: revealing the roles of von Willebrand factor in sickle cell disease pathophysiology.
- DOI:10.1097/moh.0000000000000755
- 发表时间:2023-05-01
- 期刊:
- 影响因子:3.2
- 作者:Vital, Eudorah F.;Lam, Wilbur A.
- 通讯作者:Lam, Wilbur A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eudorah Vital其他文献
Eudorah Vital的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel Bone Adhesive Scaffold to Accelerate Bone Regeneration and Improve Ridge Height Maintenance for the Treatment of Patients with Residual Ridge Resorption
开发新型骨粘合剂支架以加速骨再生并改善牙槽嵴高度维持以治疗残留牙槽嵴吸收的患者
- 批准号:
10603678 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Probing the architecture, assembly, and function of amyloid-polysaccharide entanglements in bacterial biofilms
探究细菌生物膜中淀粉样蛋白-多糖缠结的结构、组装和功能
- 批准号:
10605820 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
- 批准号:
10637562 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Commercialization of an Improved Treatment of Extremity Fractures Using a Regenerative Bone Adhesive to Accelerate Bone Healing in Aging Patients
使用再生骨粘合剂加速老年患者骨愈合的四肢骨折改进治疗方法的商业化
- 批准号:
10822079 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: