CRCNS US-German Research Proposal: Quantitative and Computational Dissection of Glutamatergic Crosstalk at Tripartite Synapses
CRCNS 美德研究提案:三方突触谷氨酸能串扰的定量和计算剖析
基本信息
- 批准号:10612169
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAstrocytesBioenergeticsBrainBrain regionCell physiologyCellsCellular MorphologyChemical SynapseCommunicationComputer ModelsDataDevelopmentDiseaseDissectionElectrophysiology (science)EventExcitatory SynapseExtracellular SpaceFeedbackFloridaFluorescence MicroscopyFutureGerman populationGermanyGiant CellsGlutamate TransporterGlutamatesHeterogeneityHippocampusHomeostasisImpairmentIndividualIon TransportIschemic StrokeLinkMeasuresModelingMolecularMonitorMorphologyMusN-Methyl-D-Aspartate ReceptorsNeocortexNeuronal PlasticityNeuronsPathway interactionsPharmacologyPlayPreparationProcessProductionPropertyProtonsResearchResearch ProposalsRoleSideSignal TransductionSiteSpecificityStructureSynapsesSynaptic CleftSynaptic TransmissionTechniquesTestingTimeTissuesUniversitiesViralWorkdensitydesigndriving forceexcitotoxicityexperimental studyextracellularfluorescence imagingfluorescence lifetime imagingimage processinginsightmulti-scale modelingmultiphoton imagingneocorticalnervous system disorderneuronal cell bodyneuronal excitabilityneurotransmissionnovelnovel strategiespharmacologicpostsynapticpredictive modelingpresynapticspatiotemporalstoichiometrysynaptic functiontooltransmission processuptake
项目摘要
CRCNS US-German Research Proposal: Quantitative and computational dissection of
glutamatergic crosstalk at tripartite synapses
(1) Christine R Rose, Heinrich Heine University, Düsseldorf, Germany
(2) Christian Henneberger, University of Bonn, Germany
(3) Ghanim Ullah, University of South Florida, Tampa, FL, USA
Project Description
1 Introduction and Background
Transmission at chemical synapses is the central mechanism by which information is
transferred between neurons. Synaptic connections such as glutamatergic excitatory
synapses are often perceived and modeled as point-to-point connections. However, there is
substantial evidence that crosstalk between various glutamatergic synapses can occur when
the presynaptically released glutamate is sensed not only by its direct postsynaptic partner
but also by nearby synapses of the same and other neurons [4]. Notably, this phenomenon
termed “glutamate spillover” not only defines the input-specificity of a given synaptic
connection and its crosstalk to neighboring synapses, but is also involved in and controlled by
activity-dependent plasticity [1, 7, 8].
How easily glutamate escapes from its release site and how far it spreads into the tissue
depends on the morphological and molecular properties of the extracellular space (ECS) as
well as on the efficacy of glutamate clearance, which primarily depends on astrocytic uptake
[11, 12]. We and others have shown that the efficacy of perisynaptic glutamate uptake by
astrocytes displays a remarkable heterogeneity between brain regions and, importantly, can
vary drastically from one synapse to the next within a brain region [3, 7, 8]. This is in part
because the morphological coverage of synapses by perisynaptic astrocyte processes (PAPs)
can differ strongly between individual synapses [14]. Moreover, the Henneberger lab has
recently shown that higher synaptic coverage by PAPs correlates with a higher local efficacy
of glutamate uptake [3]. We have also demonstrated that in addition to being heterogeneous,
astrocytic glutamate uptake and PAPs morphology both are controlled by neuronal plasticity
[1]. Moreover, glutamate uptake is governed by the transporters’ stoichiometry, importing one
glutamate molecule into the astrocyte by using the energy gained from co-transporting three
Na+ and one proton down the electrochemical gradients, whilst also exporting one K+ [12].
While the inwardly-directed Na+ gradient is the main driving force for glutamate uptake, recent
work by Rose lab and others have shown that glutamatergic activity causes local or global Na+
transients in astrocytes ([Na+]A) [15]. In the mouse hippocampus, astrocytic Na+ signals in fact
arise predominately due to the activity of glutamate transporters themselves, degrading the
Na+ gradient and thereby transiently weakening uptake capacity in a negative feedback-loop
[15-17]. In the neocortex, glutamatergic synaptic activity in addition results in prominent Na+
influx through NMDA receptors, boosting astrocyte Na+ gradients [18].
Thus, it is increasingly appreciated that astrocytic glutamate uptake is neither static nor
uniform. First, it is functionally dependent on the gradients of the transported ions which
dynamically change with synaptic transmission [12]. Second, it is plastic because structural
remodeling of PAPs on time scales of minutes profoundly alters perisynaptic glutamate spread
[1]. Therefore, the emerging hypothesis is that the degree of glutamate spillover and,
therefore, synaptic crosstalk in most brain regions are dynamically regulated and controlled at
the level of the astrocytes. Furthermore, since a single astrocyte can contact thousands of
synapses of various neurons, it has the potential to locally control the crosstalk of many
synapses. In such a scenario, an astrocyte, or a subcellular domain of it, can coordinate
crosstalk between many glutamatergic synapses on different neurons. Thereby, astrocytes
and their PAPs set the spatial fidelity of glutamatergic synaptic transmission and as a
consequence profoundly control neuronal signal exchange.
So far, these important hypotheses remain largely untested. We will fill this gap by
combining quantitative fluorescence imaging, astrocytic manipulations, and predictive
computer modelling. This will be accomplished by investigating perisynaptic astrocytic Na+
gradients, the main driving force of glutamate uptake, and local mechanisms controlling them
1
CRCNS美国 - 德国研究建议:定量和计算解剖
三方突触的谷氨酸能串扰
(1)德国杜塞尔多夫的克里斯汀·罗斯,海因里希海恩大学
(2)德国波恩大学克里斯蒂安·亨内伯格(Christian Henneberger)
(3)加尼姆·乌拉(Ghanim Ullah),南佛罗里达大学,美国佛罗里达州坦帕市
项目描述
1介绍和背景
化学突触的传输是信息的中心机制
转移在神经元之间。突触连接,例如谷氨酸能激发
突触通常被视为并建模为点对点连接。但是,有
大量证据表明,当各种谷氨酸盐突触之间的串扰可能发生
突触前释放的谷氨酸不仅被其直接的突触后伴侣感知
而且还通过附近的同一神经元的突触[4]。值得注意的是,这种现象
被称为“谷氨酸Spilover”不仅定义了给定突触的输入特异性
连接及其串扰与相邻的突触,但也参与并控制
活动依赖性可塑性[1,7,8]。
谷氨酸从其释放位点逃脱的容易程度以及它扩散到组织的范围
取决于细胞外空间(EC)的形态和分子特性
以及谷氨酸清除的效率,主要取决于星形胶质细胞的吸收
[11,12]。我们和其他
星形胶质细胞显示大脑区域之间的显着异质性,重要的是
从一个大脑区域内的一个突触到下一个[3、7、8]截然不同。这部分是
因为围肌突触星形胶质细胞过程(PAPS)对突触的形态学覆盖率(PAPS)
单个突触之间可以有很大的不同[14]。而且,Henneberger实验室有
最近表明,PAPS较高的突触覆盖范围与较高的局部效率相关
谷氨酸摄取[3]。我们还证明,除了异质外,
星形细胞谷氨酸摄取和PAPS形态均由神经元可塑性控制
[1]。此外,谷氨酸摄取受运输者的化学计量测定,进口一个
通过使用三个共同运动获得的能量,谷氨酸分子进入星形胶质细胞
Na+和一个质子向下电化学梯度,同时还导出一个K+ [12]。
虽然向内指导的Na+梯度是谷氨酸吸收的主要驱动力,但最近
Rose Lab和其他人的工作表明,谷氨酸能活动会导致本地或全局NA+
星形胶质细胞中的瞬态([Na+] a)[15]。在小鼠海马中,星形细胞Na+信号实际上
主要是由于谷氨酸转运蛋白本身的活性而出现的
NA+梯度,从而在负反馈环中暂时削弱吸收能力
[15-17]。在新皮层中,谷氨酸能突触活性以及显着的Na+
通过NMDA受体涌入,增强星形胶质细胞Na+梯度[18]。
这是越来越多的理解的是,星形胶质细胞谷氨酸摄取既不是静态的也不是
制服。首先,它在功能上取决于运输离子的梯度
通过突触传递动态变化[12]。其次,它是塑料的,因为结构
按时间尺度的时间尺度重塑PAPS,深刻改变了凝血谷氨酸的蔓延
[1]。因此,新出现的假设是谷氨酸尖毛的程度和
因此,大多数大脑区域的突触串扰受到动态调节和控制
星形胶质细胞的水平。此外,由于单个星形胶质细胞可以联系数千个
各种神经元的突触,它具有局部控制许多串扰的潜力
突触。在这种情况下
不同神经元上许多谷氨酸能突触之间的串扰。因此,星形胶质细胞
他们的pap设定了谷氨酸能突触传播的空间保真度
结果深刻控制神经元信号交换。
到目前为止,这些重要的假设在很大程度上未经测试。我们将通过
结合定量荧光成像,星形细胞操作和预测性
计算机建模。这将通过研究直发星形胶质细胞Na+来实现
梯度,谷氨酸吸收的主要驱动力以及控制它们的局部机制
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ghanim Ullah其他文献
Ghanim Ullah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
PRDX6-PLIN4通路调控星形胶质细胞脂代谢异常在抑郁症发生中的作用研究
- 批准号:82301707
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轴突CD82调控星形胶质细胞TGF-β2/Smads信号通路改善青光眼视盘结构重塑的作用及机制探究
- 批准号:82301200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
缺血性脑卒中后NDRG2通过STING/IFNβ信号轴抑制星形胶质细胞A1型极化的作用和机制研究
- 批准号:82301548
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星形胶质细胞糖代谢重编程介导Lactoferrin基因缺失引发的早期生长迟缓和认知障碍
- 批准号:32371037
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
放射后早期神经元-星形胶质细胞脂肪酸代谢耦联对正常脑组织免疫微环境的重塑及其机制研究
- 批准号:82373516
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
RLIP, Mitochondrial Dysfunction in Alzheimer’s Disease
RLIP,阿尔茨海默病中的线粒体功能障碍
- 批准号:
10901025 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Sex-based differences of a high fat diet in Alzheimer's disease (AD): Can nilotinib reverse bioenergetic and neuropathological deficits?
阿尔茨海默病 (AD) 中高脂肪饮食的性别差异:尼罗替尼能否逆转生物能量和神经病理学缺陷?
- 批准号:
10629882 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别:
Interactions between Mitochondria, ER, and Amyloid
线粒体、ER 和淀粉样蛋白之间的相互作用
- 批准号:
10751909 - 财政年份:2023
- 资助金额:
$ 12.58万 - 项目类别: