Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
基本信息
- 批准号:10617198
- 负责人:
- 金额:$ 63.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAnatomyBiological MarkersBiomedical EngineeringBrainBrain regionClinicalClinical DataCollaborationsCouplingDataDevelopmentDevicesDiagnostic testsDiffusion Magnetic Resonance ImagingDiseaseElectrodesElectroencephalographyEpilepsyEvaluationFunctional Magnetic Resonance ImagingGoalsGraphImageImaging DeviceImplantInterventionIntractable EpilepsyLasersLesionLimbic SystemMagnetic Resonance ImagingMapsMeasuresMedicalMedicineMethodsMorbidity - disease rateMultimodal ImagingNetwork-basedNeurologyOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPatternPennsylvaniaPersonsPharmaceutical PreparationsProceduresPropertyPublic HealthResearchResistanceRestRisk ReductionSamplingSampling ErrorsSeizuresSouth CarolinaStereotypingStructureTemporal LobeTemporal Lobe EpilepsyTestingTranslatingUnited StatesUniversitiesWorkclinical carecomputational neuroscienceconnectomeimaging biomarkerimplantationimprovedindividual patientinnovationmultimodal dataneuroimagingneuroimaging markerneurosurgerynon-invasive imagingnovelnovel therapeuticsopen sourcepersonalized strategiespredictive modelingprofessional atmospherespatiotemporalsurgery outcome
项目摘要
Despite recent advances in neuroimaging, approximately 2/3 of intractable epilepsy patients that undergo
surgical evaluation continue to require intracranial EEG (IEEG), arguably the most invasive diagnostic test in
medicine. We currently lack methods to quantitatively map noninvasive imaging measures of structure and
function to IEEG. Specifically, there is a critical need to validate whole-brain noninvasive neuroimaging network-
based biomarkers to guide precise placement of electrodes and translate noninvasive network neuroimaging to
change the paradigms of clinical care. The long-term goal of this proposal is to predict IEEG functional dynamics
and surgical outcomes using noninvasive MRI-based measures of structure and function. Our overall objective,
which is the next step toward attaining our long-term goal, is to develop open-source noninvasive imaging tools
that map epileptic networks by integrating MRI and IEEG data. Our central hypothesis is that noninvasive
measures of structure and function relate to and can predict the intricate functional dynamics captured on IEEG.
The central hypothesis will be tested in patients undergoing IEEG targeting the temporal lobe network by
pursuing three specific aims: 1) To map the patient specific structural connectome to IEEG seizure onset and
propagation, 2) To correlate seizure onset and propagation on IEEG with network measures derived from resting
state functional MRI (rsfMRI), and 3) To integrate the structural (Aim 1) and functional (Aim 2) connectome with
standard qualitative clinical data to predict IEEG network dynamics and surgical outcomes. Under the first aim
patients will undergo diffusion tensor imaging (DTI) prior to stereotactic IEEG, an IEEG method that inherently
samples long range networks. The functional IEEG network will be mapped to DTI thus defining how seizures
are constrained by the underlying structural connectome as they propagate. Under the second aim patients with
temporal lobe epilepsy will undergo rsfMRI on 7T MRI prior to stereotactic IEEG. Functional network measures
from rsfMRI and IEEG will be coregistered and rsfMRI will be used to predict functional EEG ictal and interictal
networks. In the third aim two models predicting IEEG network dynamics and epilepsy surgical outcomes will be
created building off of methods developed in Aims 1 and 2. The proposed research is innovative because it
represents a substantive departure from the status quo by directly connecting noninvasive multimodal imaging
with measures of functional network dynamics in IEEG. The proposed research is significant because it is
expected that successful completion of these aims will yield personalized strategies for IEEG targeting based on
noninvasive neuroimaging.
尽管神经影像学的最新进展,但经历了大约2/3的顽固性癫痫患者
手术评估继续需要颅内脑电图(IEEG),可以说是最具侵入性的诊断测试
药品。目前,我们缺乏定量绘制结构和
对IEEG的功能。具体而言,迫切需要验证全脑无创神经影像网络 -
基于生物标志物,以指导电极的精确放置并将非侵入性网络神经影像转化为
改变临床护理的范例。该建议的长期目标是预测IEEG功能动态
以及使用基于非侵入性MRI的结构和功能测量的手术结局。我们的整体目标
这是实现我们的长期目标的下一步,就是开发开源无创成像工具
该通过集成MRI和IEEG数据来映射癫痫网络。我们的中心假设是无创的
结构和功能的度量与IEEG上捕获的复杂功能动力学有关,并且可以预测IEEG上的复杂功能动力学。
中央假设将在针对颞叶网络的患者中进行测试
追求三个具体目标:1)将特定的结构连接映射到IEEG癫痫发作和
传播,2)将癫痫发作和对IEEG的传播与静止的网络度量相关联
状态功能MRI(RSFMRI),3)将结构(AIM 1)和功能(AIM 2)连接组合在一起
标准定性临床数据可预测IEEG网络动态和手术结果。在第一个目标下
患者将在立体定向IEEG之前进行扩散张量成像(DTI),这是一种固有的IEEG方法
样本远程网络。功能性IEEG网络将映射到DTI,从而定义了癫痫发作
在传播时会受到潜在的结构连接组的限制。在第二个目标患者下
颞叶癫痫将在立体定向IEEG之前在7T MRI上进行RSFMRI。功能网络度量
来自RSFMRI和IEEG将是核心的,RSFMRI将用于预测功能性EEG ICTAL和PUSTICTAL
网络。在第三个目标中,两个模型预测IEEG网络动态和癫痫手术结果将是
根据目标1和2中开发的方法创建的建筑。拟议的研究具有创新性,因为它是创新的
通过直接连接非侵入性多模式成像,代表与现状的实质性偏离
IEEG中功能网络动力学的度量。拟议的研究很重要,因为它是
预计这些目标的成功完成将为IEEG定位提供个性化策略
无创神经影像学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathryn Adamiak Davis其他文献
Kathryn Adamiak Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathryn Adamiak Davis', 18)}}的其他基金
Biomarkers to Predict Outcome from Responsive Brain Stimulation for Epilepsy
预测响应性脑刺激治疗癫痫结果的生物标志物
- 批准号:
10578058 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10359810 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Optimized Intracranial EEG Targeting in Focal Epilepsy based upon Neuroimaging Connectomics
基于神经影像连接组学的局灶性癫痫颅内脑电图优化靶向
- 批准号:
10794030 - 财政年份:2021
- 资助金额:
$ 63.6万 - 项目类别:
Localizing epileptic networks using novel 7T MRI glutamate imaging
使用新型 7T MRI 谷氨酸成像定位癫痫网络
- 批准号:
9894851 - 财政年份:2016
- 资助金额:
$ 63.6万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluating the Mechanisms of Afferent Renal Nerve Ablation as a Treatment for Hypertension
评估传入肾神经消融治疗高血压的机制
- 批准号:
10604700 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Determinants of age-induced hearing loss and reversal strategies
年龄引起的听力损失的决定因素和逆转策略
- 批准号:
10496280 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
The hypoxic niche in glioblastoma is maintained by myeloid produced creatine
胶质母细胞瘤中的缺氧生态位由骨髓产生的肌酸维持
- 批准号:
10638880 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
Outer hair cells and noise-induced hearing loss
外毛细胞和噪音引起的听力损失
- 批准号:
10862034 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别:
An Inducible Swine Hepatocellular Carcinoma Platform for Enhanced Therapeutic Development
用于增强治疗开发的诱导猪肝细胞癌平台
- 批准号:
10758109 - 财政年份:2023
- 资助金额:
$ 63.6万 - 项目类别: