Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
基本信息
- 批准号:10591957
- 负责人:
- 金额:$ 27.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdministrative SupplementAdolescentAdultAffectAgeArchitectureAttentionCancer PatientCategoriesCause of DeathChildChild HealthChildhoodClinicalClinical ResearchCollectionCommunitiesComputer softwareDataData SetDiagnosisDiseaseEconomicsElectronic Health RecordEmployment StatusEnsureEnvironmentEthnic OriginEthnic groupEventFamilyFundingFutureGoalsGoldHealthHousingHungerInstitutionLinkLiteratureLiving ArrangementMalignant Childhood NeoplasmMalignant NeoplasmsMediatingMedical centerMental HealthMethodsModelingNational Cancer InstituteNatural Language ProcessingOutcomePatient CarePatient-Focused OutcomesPatientsPediatric OncologyPediatric cohortPerformancePhysical environmentPopulationPovertyPsyche structurePublicationsQuality of lifeRaceRecording of previous eventsResearchResourcesRiskRunningSamplingSocial EnvironmentSubstance abuse problemSymptomsSystems DevelopmentTechnologyTrainingTraumaUnited StatesUniversitiesWashingtonWorkbasecancer carecancer typeclinical practicecohortdata standardsdeep learningdesigndiscrete dataeducation accessexperimental studyhealth care availabilityhealth dataimprovedinfancyinnovationlearning strategynovelopen sourcepatient populationpediatric patientspediatricianpoint of carerelating to nervous systemsocialsocial factorssocial health determinantssubstance use
项目摘要
Project Summary/Abstract
Although cancer in children and adolescents is rare, it is the leading cause of death by disease past infancy
among children in the United States. The US Department of Health defines SDOH as “conditions in the
environment that affect health, functioning, and quality of life outcomes and risks." There is an extensive
literature base linking race, ethnicity, and SDOH to pediatric cancer outcomes. SDOH are commonly queried in
pediatric clinical practice. Very few of the SDOH data points are noted as discrete data-fields such as race and
ethnicity; most are documented as clinical narratives in Electronic Health Records (EHRs) which makes it
difficult to collect SDOH in clinical and research settings to improve patient care and advance clinical research.
We therefore propose to develop novel deep learning-based NLP technologies that can extract detailed SDOH
information from EHRs of pediatric patients for secondary use. Our dataset will include clinical notes of
pediatric patients from two institutions: Seattle Cancer Care Alliance (SCCA) and University of Washington
Medical Center (UWMC). SCCA cohort will include only pediatric cancer patients. To ensure the
generalizability of extraction approaches across different institutions and patient populations, UWMC cohort will
include a random sample from general pediatric population. Our final corpus will include thousands of clinical
notes of hundreds of pediatric patients over a period of ten years (1.1.2012-12.31.2021). We will design a
frame-based event representation schema to capture the salient details of the following categories of SDOH:
(1) health care access and quality, (2) living arrangements, (3) economic stability, (4) housing and hunger
insecurity, (5) prior trauma/loss, (6) education access and quality, (7) patient and family substance use history,
and (8) patient/family mental. We will use active learning to sample a diverse and representative set of notes
for gold standard annotation. Given this gold standard, our goal is automated extraction of SDOH from
clinical narratives of pediatric patients with deep learning-based NLP approaches. The proposed frame-
based event representation, active learning framework and NLP architectures will be based on ongoing work
from our ITCR - R21 project titled “Extraction of Symptom Burden from Clinical Narratives of Cancer Patients
using Natural Language Processing” (1 R21 CA258242-01). All models and their implementations produced
during the execution of this project will be shared with the community as open-source resources.
项目概要/摘要
尽管儿童和青少年癌症很少见,但它是婴儿期以上疾病导致死亡的主要原因
美国卫生部将 SDOH 定义为“儿童状况”。
影响健康、功能和生活质量的结果和风险。”
将种族、民族和 SDOH 与儿科癌症结果联系起来的文献库经常受到质疑。
儿科临床实践中很少有 SDOH 数据点被标记为离散数据字段,例如种族和
种族;大多数记录为电子健康记录 (EHR) 中的临床叙述,这使得
很难在临床和研究环境中收集 SDOH 以改善患者护理和推进临床研究。
因此,我们建议开发新颖的基于深度学习的 NLP 技术,可以提取详细的 SDOH
我们的数据集将包括儿科患者电子病历中的临床记录,以供二次使用。
来自两个机构的儿科患者:西雅图癌症护理联盟 (SCCA) 和华盛顿大学
医疗中心 (UWMC)。SCCA 队列将仅包括儿童癌症患者。
提取方法在不同机构和患者群体中的普遍性,UWMC 队列将
包括来自一般儿科人群的随机样本,我们的最终语料库将包括数千个临床样本。
我们将设计一个十年期间(2012 年 1 月 1 日至 2021 年 12 月 31 日)数百名儿科患者的记录。
基于帧的事件表示模式,用于捕获以下 SDOH 类别的显着细节:
(1) 医疗保健的获取和质量,(2) 生活安排,(3) 经济稳定,(4) 住房和饥饿
不安全感,(5) 先前的创伤/损失,(6) 教育机会和质量,(7) 患者和家庭药物使用史,
(8) 患者/家属心理 我们将利用主动学习来抽取一组多样化且有代表性的笔记。
对于金标准注释,我们的目标是从金标准中自动提取 SDOH。
使用基于深度学习的 NLP 方法对儿科患者进行临床叙述。
基于事件表示、主动学习框架和 NLP 架构将基于正在进行的工作
来自我们的 ITCR - R21 项目,标题为“从癌症患者的临床叙述中提取症状负担”
使用自然语言处理”(1 R21 CA258242-01)生成的所有模型及其实现。
在该项目执行期间将作为开源资源与社区共享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meliha Yetisgen其他文献
Meliha Yetisgen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meliha Yetisgen', 18)}}的其他基金
Extraction of Symptom Burden from Clinical Narratives of Cancer Patients using Natural Language Processing
使用自然语言处理从癌症患者的临床叙述中提取症状负担
- 批准号:
10179677 - 财政年份:2021
- 资助金额:
$ 27.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8635902 - 财政年份:2014
- 资助金额:
$ 27.45万 - 项目类别:
Using NLP to Extract Clinically Important Recommendations from Radiology Reports
使用 NLP 从放射学报告中提取临床上重要的建议
- 批准号:
8804856 - 财政年份:2014
- 资助金额:
$ 27.45万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
ACHIEVE Administrative Supplement for Trainee Funding (OBSSR)
ACHIEVE 实习生资助行政补充 (OBSSR)
- 批准号:
10853843 - 财政年份:2022
- 资助金额:
$ 27.45万 - 项目类别:
ACHIEVE Administrative Supplement for Trainee Funding (NCI)
ACHIEVE 实习生资助行政补充 (NCI)
- 批准号:
10853953 - 财政年份:2022
- 资助金额:
$ 27.45万 - 项目类别:
ACHIEVE Administrative Supplement for Trainee Funding (ODSS)
ACHIEVE 实习生资助行政补充 (ODSS)
- 批准号:
10853886 - 财政年份:2022
- 资助金额:
$ 27.45万 - 项目类别:
ACHIEVE Administrative Supplement for Trainee Funding (ODP)
ACHIEVE 实习生资助行政补充 (ODP)
- 批准号:
10853920 - 财政年份:2022
- 资助金额:
$ 27.45万 - 项目类别:
Navajo NARCH Partnership Administrative Supplement
纳瓦霍 NARCH 合作伙伴行政补充文件
- 批准号:
10570098 - 财政年份:2021
- 资助金额:
$ 27.45万 - 项目类别: