Defining the Interplay Between Viral Adaptation and Host Proteostasis
定义病毒适应和宿主蛋白质稳态之间的相互作用
基本信息
- 批准号:10587055
- 负责人:
- 金额:$ 60.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Adaptive Immune SystemAdjuvantAgingAllyAmino Acid SequenceAmino Acid SubstitutionAmino AcidsAntibodiesAntiviral AgentsAntiviral TherapyBiochemicalBiological ModelsBiologyBiophysicsCellsChemicalsComplexComputer ModelsComputing MethodologiesDefectDependenceEndoplasmic ReticulumEnvironmentEvolutionExtinction (Psychology)GeneticGenomicsHIVHuman poliovirusImmune systemIndividualInfluenzaInfluenza HemagglutininInnate Immune SystemKineticsKnowledgeMediatingMethodsMissense MutationMolecularMolecular ChaperonesMutagensMutationNucleoproteinsOrganismPathologicPathway interactionsPharmaceutical PreparationsPlayPopulationPredispositionProcessProductionProteinsQuality ControlRNARNA VirusesResearchResistanceResistance developmentRoleShapesStudy modelsSystemTestingTherapeuticThermodynamicsTreatment ProtocolsVaccinesVariantViralViral GenomeViral ProteinsVirusWorkZoonosesantiviral drug developmentbiophysical analysisbiophysical propertiesbiophysical techniquescell typecostcross-species transmissiondesigndynamic systemgenome-wideimprovedinsightinventionmutation screeningneutralizing antibodynovelpathogenpredictive modelingpressurepreventprotein foldingproteostasisresistance mechanismstemtargeted treatmenttransmission processvirology
项目摘要
Exceedingly high mutation rates permit most RNA viruses to rapidly explore protein sequence space. On the other hand, high mutation rates also result in widespread production of viral protein variants with poor biophysical properties and severe folding defects. Protein variants that cannot fold successfully are removed from the population, even if they could otherwise confer a beneficial adaptive function. Recent work has revealed that the composition and activities of the host cell’s protein folding and quality control machinery (the proteostasis network) play a central role in defining the amino acid sequence space accessible to rapidly evolving RNA viral proteins. This phenomenon has so far largely been explored using proteostasis modulation itself as the selection pressure. It is not yet clear whether host cell chaperones are directly – by enhancing viral protein folding – impacting the ability of viruses to adapt to and escape from external selection pressures stemming from the host’s adaptive immune system, antiviral drugs, or other factors. Using influenza as a model system, this proposal integrates state-of-the-art chemical biology, genetic, biochemical, biophysical, and computational methods to comprehensively evaluate and elucidate, at the molecular-level, the emerging and complex interplay between host proteostasis and viral adaptation in the context of diverse selection pressures. Aim 1 focuses on the mechanism by which hijacked host chaperones promote influenza escape from innate immune system factors, establishing biophysical origins of host chaperone-dependence in influenza nucleoprotein evolution and elucidating whether and how the virus can readily adapt to challenging host proteo- stasis environments. Aim 2 establishes how the composition and activities of the host cell’s endoplasmic reticulum proteostasis network impact the ability of influenza hemagglutinin, the primary target of influenza-neutralizing antibodies, to escape selection pressure from the adaptive immune system. Aim 3 operates on a broader scale to understand how host proteostasis networks impact genome-wide mutational tolerance and influenza error catastrophe, a phenomenon in which increasing viral mutation rates past a certain threshold causes population extinction. Experimental findings from all these Aims are integrated with protein biophysical studies and computational modeling to illuminate molecular origins of host proteostasis-dependent viral adaptation. This work is expected to establish host proteostasis as a defining force that shapes viral adaptation, particularly in the context of highly relevant selection pressures. Beyond fundamental elucidation of viral evolution, findings will greatly enhance understanding of the factors involved in viral adaptation to host selection pressures and, in the longer-term, improve the ability to accurately predict viral evolution. Discoveries are also expected to highlight the potential of therapeutic adjuvants targeting host chaperones to enable treatment regimens to which viruses cannot easily evolve resistance. Contributions will impact fields ranging from basic virology and vaccine and antiviral drug development to evolutionary biology and protein folding biophysics.
极高的突变速率使大多数RNA病毒都可以快速探索蛋白质序列空间。另一方面,高突变速率还导致宽度生产病毒蛋白变异体具有较差的生物物理特性和严重的折叠缺陷。无法成功折叠的蛋白质变体从人群中删除,即使它们可以赋予有益的自适应功能。最近的工作表明,宿主细胞的蛋白质折叠和质量控制机制(蛋白质症网络)的组成和活性在定义可以快速演变的RNA病毒蛋白上可访问的氨基酸序列空间方面起着核心作用。到目前为止,这种现象已在很大程度上是使用蛋白质的调制本身作为选择压力来探索的。尚不清楚宿主细胞链酮是否直接(通过增强病毒蛋白折叠)会影响病毒适应并摆脱源于宿主的适应性免疫系统,抗病毒药物或其他因素的外部选择压力的能力。该提案使用actractza作为模型系统,整合了最先进的化学生物学,遗传,生化,生物物理和计算方法,以在分子水平上全面评估和阐明,在分子水平,宿主蛋白质之间的新出现和复杂的相互作用,宿主的蛋白质量和病毒性适应在多样选择压力的背景下。 AIM 1的重点是劫持宿主伴侣促进先天免疫系统因素的影响,从而建立了宿主链链依赖性的生物物理起源,并阐明了病毒是否以及如何轻松适应挑战宿主蛋白质 - 蛋白质 - 蛋白质stasis环境。 AIM 2确定了宿主细胞内质网的组成和活性如何影响影响Za Hemagglutinin的能力,Hemagglutinin是影响力中和中和抗体的主要目标,从适应性免疫系统中避免选择压力。 AIM 3在更广泛的范围内运行,以了解宿主蛋白抑制网络如何影响全基因组突变耐受性和影响力误差灾难,这种现象在这种现象中,在一定阈值中增加病毒突变率会导致人口扩展。所有这些目标的实验发现与蛋白质生物物理研究和计算建模集成,以阐明宿主蛋白stosisopis依赖性病毒适应的分子起源。预计这项工作将建立宿主蛋白质症作为塑造病毒适应的定义力,尤其是在高度相关的选择压力的背景下。除了阐明病毒进化的基本阐明之外,发现还将大大增强对病毒适应宿主选择压力中涉及的因素的理解,从而长期提高了准确预测病毒进化的能力。还希望发现靶向宿主伴侣的治疗调节剂的潜力使病毒无法轻易发展抗性。贡献将影响从基本病毒学和疫苗和抗病毒药物发展到进化生物学和蛋白质折叠生物物理学等领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Donald Shoulders其他文献
Matthew Donald Shoulders的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Donald Shoulders', 18)}}的其他基金
Defining the Interplay Between Viral Adaptation and Host Proteostasis
定义病毒适应和宿主蛋白质稳态之间的相互作用
- 批准号:
10707348 - 财政年份:2022
- 资助金额:
$ 60.86万 - 项目类别:
Leveraging Next-Generation Directed Evolution Platforms and Chemical Control of Proteostasis to Deliver Robust Biotechnologies and Illuminate Roles of Chaperone Networks in Protein Evolution
利用下一代定向进化平台和蛋白质稳态的化学控制来提供强大的生物技术并阐明伴侣网络在蛋白质进化中的作用
- 批准号:
10395468 - 财政年份:2020
- 资助金额:
$ 60.86万 - 项目类别:
Leveraging Next-Generation Directed Evolution Platforms and Chemical Control of Proteostasis to Deliver Robust Biotechnologies and Illuminate Roles of Chaperone Networks in Protein Evolution
利用下一代定向进化平台和蛋白质稳态的化学控制来提供强大的生物技术并阐明伴侣网络在蛋白质进化中的作用
- 批准号:
10387843 - 财政年份:2020
- 资助金额:
$ 60.86万 - 项目类别:
Leveraging Next-Generation Directed Evolution Platforms and Chemical Control of Proteostasis to Deliver Robust Biotechnologies and Illuminate Roles of Chaperone Networks in Protein Evolution
利用下一代定向进化平台和蛋白质稳态的化学控制来提供强大的生物技术并阐明伴侣网络在蛋白质进化中的作用
- 批准号:
10728415 - 财政年份:2020
- 资助金额:
$ 60.86万 - 项目类别:
Leveraging Next-Generation Directed Evolution Platforms and Chemical Control of Proteostasis to Deliver Robust Biotechnologies and Illuminate Roles of Chaperone Networks in Protein Evolution
利用下一代定向进化平台和蛋白质稳态的化学控制来提供强大的生物技术并阐明伴侣网络在蛋白质进化中的作用
- 批准号:
10610504 - 财政年份:2020
- 资助金额:
$ 60.86万 - 项目类别:
Leveraging Next-Generation Directed Evolution Platforms and Chemical Control of Proteostasis to Deliver Robust Biotechnologies and Illuminate Roles of Chaperone Networks in Protein Evolution
利用下一代定向进化平台和蛋白质稳态的化学控制来提供强大的生物技术并阐明伴侣网络在蛋白质进化中的作用
- 批准号:
10608969 - 财政年份:2020
- 资助金额:
$ 60.86万 - 项目类别:
Defining and Modulating Mechanisms of Collagen Proteostasis
胶原蛋白稳态的定义和调节机制
- 批准号:
10183166 - 财政年份:2017
- 资助金额:
$ 60.86万 - 项目类别:
Unveiling the Proteostasis Network of Normal and Disease_Causing Collagen_I
揭示正常和疾病的蛋白质稳态网络_Causing Collagen_I
- 批准号:
9118077 - 财政年份:2015
- 资助金额:
$ 60.86万 - 项目类别:
Unveiling the Proteostasis Network of Normal and Disease_Causing Collagen_I
揭示正常和疾病的蛋白质稳态网络_Causing Collagen_I
- 批准号:
8973926 - 财政年份:2015
- 资助金额:
$ 60.86万 - 项目类别:
相似国自然基金
穿透性靶向胰腺癌内cDC1的纳米佐剂调控溶酶体逃逸促进放疗诱导ICD的机制研究
- 批准号:82303680
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多级改造的工程化外泌体自佐剂疫苗平台实现鼻上皮细胞感染拟态和粘膜递送的研究
- 批准号:32371440
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
展示PD-L1抗体的纳米锰佐剂联合放疗以诱导原位肿瘤疫苗的产生及其机制的探究
- 批准号:32371518
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向FPPS的双磷酸疫苗佐剂的开发
- 批准号:82341040
- 批准年份:2023
- 资助金额:100 万元
- 项目类别:专项基金项目
应用于冠状病毒广谱疫苗开发的新型全链式免疫增强型佐剂研究
- 批准号:82341036
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
相似海外基金
Mechanistic evaluation of mast cell agonists combined with TLR, NOD and STING agonists.
肥大细胞激动剂联合 TLR、NOD 和 STING 激动剂的机制评估。
- 批准号:
10657847 - 财政年份:2023
- 资助金额:
$ 60.86万 - 项目类别:
7HP349, an oral integrin activator to augment effectiveness of pre-exposure influenza vaccination
7HP349,一种口服整合素激活剂,可增强暴露前流感疫苗接种的有效性
- 批准号:
10693536 - 财政年份:2023
- 资助金额:
$ 60.86万 - 项目类别:
Impact of preexisting immune profile in elderly on influenza vaccine response
老年人原有免疫特征对流感疫苗反应的影响
- 批准号:
10485431 - 财政年份:2022
- 资助金额:
$ 60.86万 - 项目类别:
Defining the Interplay Between Viral Adaptation and Host Proteostasis
定义病毒适应和宿主蛋白质稳态之间的相互作用
- 批准号:
10707348 - 财政年份:2022
- 资助金额:
$ 60.86万 - 项目类别:
Engineering the Skin Immune System to Induce Systemic Immune Responses
改造皮肤免疫系统以诱导全身免疫反应
- 批准号:
10363729 - 财政年份:2021
- 资助金额:
$ 60.86万 - 项目类别: