The interplay between the UPR and protein biogenesis at the ER
UPR 和 ER 蛋白质生物发生之间的相互作用
基本信息
- 批准号:10614583
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAddressAntibodiesApoptoticArchitectureAttenuatedBeta CellBiochemicalBiogenesisCRISPR/Cas technologyCarrier ProteinsCell DeathCell Death InductionCellsCessation of lifeChronicComplexDataDefectDegradation PathwayDevelopmentDiabetes MellitusDiseaseDominant-Negative MutationEndoplasmic ReticulumEnzymesFundingGenesHomeostasisHormonesHumanKnowledgeLeadLifeLinkMalignant NeoplasmsMediatingMembraneMembrane ProteinsMessenger RNAMolecularMolecular ChaperonesMonitorMutationNon-Insulin-Dependent Diabetes MellitusPathway interactionsPhosphorylationPhosphotransferasesPhysiologicalPlayProtein translocationProteinsQuality ControlRNA SplicingRibonucleasesRibosomesRoleSignal TransductionStructureTestingUbiquitinationWorkXBP1 geneendoplasmic reticulum stresshuman diseaseinsightmisfolded proteinnovelpolycystic liver diseasepolypeptidepreventprotein foldingreconstitutionrecruitresponsesecretory proteinsensortranscription factor
项目摘要
Project Summary/Abstract:
Secretory and membrane proteins, which account for ~30% of all human proteins, are co-translationally
translocated across or inserted into the endoplasmic reticulum (ER). These nascent polypeptides are folded
into functional proteins with the help of chaperones and folding enzymes in the ER. Defects in protein folding
lead to the accumulation of misfolded proteins and the triggering of ER stress, which activates the unfolded
protein response (UPR). Of the three major UPR sensors, IRE1α is the most conserved ER-localized
transmembrane kinase/RNase that is activated through oligomerization/phosphorylation upon ER stress. Once
activated, IRE1α mediates the splicing of XBP1u mRNA to produce an active transcription factor, XBP1s,
which drives expression of UPR target genes to mitigate ER stress. Also, IRE1α promiscuously cleaves ER-
localized mRNAs through the regulated Ire1-dependent decay (RIDD) pathway to reduce the burden of the
incoming protein load. Under chronic ER stress conditions, however, IRE1α switches from the pro-survival
mode to pro-apoptotic mode, resulting in cell death, which is associated with human diseases including, type 2
diabetes and cancer. Despite the physiological importance, the factors that control activation and inactivation
of IRE1α/XBP1 signaling remain unclear.
We have recently discovered that IRE1α forms a complex with the Sec61/Sec63 translocon complex to
access its mRNA substrates. In the current funding period, we have shown that the Sec61 translocon bridges
IRE1α with the Sec63/BiP complex to turnoff IRE1α signaling during persistent ER stress. Our studies
discovered that the Sec63/BiP complex is also responsible for freeing clogged Sec61 translocons as well as
promoting protein folding in the ER. These new findings raise the hypothesis that the IRE1α/Sec61/Sec63
complex plays a central role in the activation and inactivation of IRE1α/XBP1 signaling to maintain ER
homeostasis in cells. In the next funding period, we will test this hypothesis by (i) determining the role of this
complex in making life-or-death decisions during ER stress; (ii) determining the architecture of the
IRE1α/Sec61/Sec63/BiP complex; (iii) determining the role of this complex in sensing/responding to protein
translocation defects in the ER. In an independent aim, we will establish a novel functional link between a
cytosolic quality control and IRE1α/XBP1 signaling. We plan to use a combined approach of CRISPR/Cas9
edited cells, biochemical reconstitution, and structural approaches to address these problems. Overall, we
expect these studies will provide a mechanistic insight into how the UPR and protein translocation/quality
control pathways work together to maintain ER homeostasis. The knowledge gained from these studies will
inform the development of possible treatments for several human diseases including diabetes, cancer, and
polycystic liver diseases.
项目摘要/摘要:
分泌蛋白和膜蛋白约占所有人类蛋白质的 30%,是共翻译的
这些新生多肽被折叠穿过或插入内质网 (ER)。
在内质网中的分子伴侣和折叠酶的帮助下转化为功能性蛋白质。
导致错误折叠蛋白质的积累并触发内质网应激,从而激活未折叠的蛋白质
蛋白质反应 (UPR) 在三种主要的 UPR 传感器中,IRE1α 是内质网定位最保守的。
跨膜激酶/RNase 在 ER 应激时通过寡聚/磷酸化被激活。
IRE1α 激活后,介导 XBP1u mRNA 的剪接,产生活性转录因子 XBP1s,
IRE1α 会驱动 UPR 靶基因的表达来减轻 ER 应激。
通过调节 Ire1 依赖性衰变 (RIDD) 途径定位 mRNA,以减轻
然而,在慢性 ER 应激条件下,IRE1α 从促生存转变。
模式转变为促凋亡模式,导致细胞死亡,这与人类疾病(包括 2 型)相关
尽管具有生理重要性,但控制激活和失活的因素。
IRE1α/XBP1 信号传导的机制仍不清楚。
我们最近发现IRE1α与Sec61/Sec63易位子复合物形成复合物
在当前资助期间,我们已经证明了 Sec61 易位子桥。
IRE1α 与 Sec63/BiP 复合物在持续 ER 应激期间关闭 IRE1α 信号传导。
发现 Sec63/BiP 复合体还负责释放堵塞的 Sec61 易位子以及
这些新发现提出了 IRE1α/Sec61/Sec63 的假设。
复合物在 IRE1α/XBP1 信号传导的激活和失活中发挥核心作用,以维持 ER
在下一个资助期内,我们将通过(i)确定其作用来检验这一假设。
在 ER 压力下做出生死攸关的决定很复杂;(ii) 确定结构
IRE1α/Sec61/Sec63/BiP 复合物;(iii) 确定该复合物在感知/响应蛋白质中的作用
ER 中的易位缺陷 在一个独立的目标中,我们将在 ER 之间建立一种新颖的功能联系。
我们计划使用 CRISPR/Cas9 的组合方法进行胞质质量控制和 IRE1α/XBP1 信号传导。
总的来说,我们通过编辑细胞、生化重建和结构方法来解决这些问题。
希望这些研究能够提供有关 UPR 和蛋白质易位/质量如何变化的机制见解
从这些研究中获得的知识将共同维持内质网稳态。
为多种人类疾病的可能治疗方法的开发提供信息,包括糖尿病、癌症和
多囊肝病。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A second chance for protein targeting/folding: Ubiquitination and deubiquitination of nascent proteins.
- DOI:10.1002/bies.202200014
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER.
- DOI:10.1016/j.celrep.2022.111921
- 发表时间:2023-01-31
- 期刊:
- 影响因子:8.8
- 作者:
- 通讯作者:
Dynamic changes in complexes of IRE1α, PERK, and ATF6α during endoplasmic reticulum stress.
- DOI:10.1091/mbc.e17-10-0594
- 发表时间:2018-06-01
- 期刊:
- 影响因子:3.3
- 作者:Sundaram A;Appathurai S;Plumb R;Mariappan M
- 通讯作者:Mariappan M
Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry.
通过天然质谱破译 GET 途径伴侣的分子组织。
- DOI:10.1016/j.bpj.2022.02.026
- 发表时间:2022
- 期刊:
- 影响因子:3.4
- 作者:Giska,Fabian;Mariappan,Malaiyalam;Bhattacharyya,Moitrayee;Gupta,Kallol
- 通讯作者:Gupta,Kallol
Signal sequences encode information for protein folding in the endoplasmic reticulum.
- DOI:10.1083/jcb.202203070
- 发表时间:2023-01-02
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MALAIYALAM MARIAPPAN其他文献
MALAIYALAM MARIAPPAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MALAIYALAM MARIAPPAN', 18)}}的其他基金
The interplay between the UPR and protein biogenesis at the ER
UPR 和 ER 蛋白质生物发生之间的相互作用
- 批准号:
10211808 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
The mechanism of Ire1-mediated mRNA cleavage during endoplasmic reticulum stress
内质网应激过程中Ire1介导的mRNA裂解机制
- 批准号:
9265477 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
The interplay between the UPR and protein biogenesis at the ER
UPR 和 ER 蛋白质生物发生之间的相互作用
- 批准号:
10403561 - 财政年份:2016
- 资助金额:
$ 34.51万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the Molecular Mechanism of TRIP13-mediated Radiation Resistance in Oral Squamous Cell Carcinoma
阐明 TRIP13 介导的口腔鳞状细胞癌放射抗性的分子机制
- 批准号:
10480747 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Elucidating the Molecular Mechanism of TRIP13-mediated Radiation Resistance in Oral Squamous Cell Carcinoma
阐明 TRIP13 介导的口腔鳞状细胞癌放射抗性的分子机制
- 批准号:
10649402 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Adrenal cell ATP1A1 mutations and mechanisms of aldosterone biosynthesis
肾上腺细胞ATP1A1突变与醛固酮生物合成机制
- 批准号:
9981536 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Pyramidal neuron hypoactivity in schizophrenia cortex
精神分裂症皮质锥体神经元活性低下
- 批准号:
10012945 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别:
Adrenal cell ATP1A1 mutations and mechanisms of aldosterone biosynthesis
肾上腺细胞ATP1A1突变与醛固酮生物合成机制
- 批准号:
10447775 - 财政年份:2019
- 资助金额:
$ 34.51万 - 项目类别: