Mechanisms and Targeted Control of Pancreatic B-Cell Antioxidant Response
胰腺 B 细胞抗氧化反应的机制和靶向控制
基本信息
- 批准号:10614991
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Advisory CommitteesAffectAntioxidantsAntisense OligonucleotidesArachidonate 15-LipoxygenaseAutoimmune DiabetesAutoimmune DiseasesAutopsyAwardBeta CellBlood GlucoseCell DeathCell SurvivalCell physiologyCellsCytoprotectionDNADataDeteriorationDevelopmentDiabetes MellitusDiabetes preventionDiabetic mouseEnvironmentEnvironmental Risk FactorFunctional disorderFundingFutureGCG geneGenerationsGenomicsGoalsGrantHomeostasisHydrophobicityImmuneImmune ToleranceImmune responseInbred NOD MiceIndianaIndividualInsulinInsulin-Dependent Diabetes MellitusKnowledgeMaintenanceMediatingMentorsMetabolicMetabolic DiseasesMicellesMonitorOnset of illnessOralOrganellesOxidation-ReductionOxidative StressPancreasPathway interactionsPersonsPharmacodynamicsPolymersPopulationPredispositionPreparationPrevalencePreventionProblem SolvingProductionProteinsProteomicsPublic HealthReactive Oxygen SpeciesRepressionResearchResearch PersonnelResidual stateResistanceRoleScientistSignal PathwaySignal TransductionStressStructure of beta Cell of isletSusceptibility GeneTechniquesTestingTherapeuticTrainingUnited StatesUnited States National Institutes of HealthUniversitiesWorkWritingalpha Tocopherolautoimmune pathogenesiscareerdesigndiabetes pathogenesisdiabetogenicexperimental studyfunctional lossglucagon-like peptide 1imaging probeimmune cell infiltrateimmunogenicityin vivoisletknock-downmedical schoolsmouse modelnanoparticlenanosizednew therapeutic targetnovelnovel therapeutic interventionoxidative damagepreventresilienceresponsestressortargeted imagingtargeted treatmenttool
项目摘要
PROJECT SUMMARY
Type 1 Diabetes (T1D) is an autoimmune disease caused by progressive destruction of the insulin producing β-
cells. The loss of immune tolerance is a result of predisposing genes and environmental factors. However, the
exact trigger of autoimmune attack is currently not understood. During the development and progression of T1D,
β-cell oxidative stress is a key contributing factor to β-cell dysfunction and destruction. For many years it was
thought that β-cells were completely destroyed in individuals with T1D. Recently, this dogma has been
challenged by the observation of residual insulin positive β-cells in individuals with long-standing T1D. Similarly,
in the nonobese diabetic (NOD) mouse model for T1D, there is a subpopulation of β-cells that are able to
withstand prolonged immune attack. These data suggest there is a population of β-cells that are able to adapt
and survive during conditions of high stress. To build on these findings, the central goal of this proposal is to
define pathways to promote β-cell survival and protection against T1D. I hypothesize that rapid activation of the
antioxidant response reduces β-cell ROS to repress islet immunogenicity during T1D pathogenesis. I will test
this hypothesis through two specific aims. Experiments in aim 1, will investigate how β-cell selective loss of
NRF2 contributes to the development of autoimmune diabetes. In aim 2, I will identify the mechanism controlling
β-cell ROS mitigation in early T1D pathogenesis. Completion of these aims will determine the functional role and
mechanism of β-cell adaptive redox response in vivo. Importantly, this work will identify novel targets to prevent
β-cell destruction under diabetogenic conditions, and tools developed and tested as a part of this work can be
used in future studies to target therapeutics or imaging probes to the β-cells. These studies will also positively
impact my career. Both a comprehensive understanding of islet function in early diabetes pathogenesis and the
use of cutting-edge techniques will enable me to develop as a scientist and set me on a trajectory to make real
and lasting impacts in the field of diabetes research. This F31 award entails a 2-year training plan designed to
achieve 4 main objectives: 1) build a strong understanding of techniques and concepts in diabetes research, 2)
train in the generation and use of targeted nanoparticles and pharmacodynamics for diabetes research, 3) train
in oral and written presentation of research findings, including grant preparation, and 4) train in the use and
handling of mouse models for diabetes research. In addition, the applicant will benefit from the outstanding and
collaborative research environment provided by the Center for Diabetes and Metabolic Diseases at the Indiana
University School of Medicine. Her training will also benefit from a mentoring and advisory committee consisting
of a diverse team of carefully selected and established NIH funded investigators. In summary, the proposed
studies and training objectives will provide the applicant with a fertile training environment in which she can
become a versatile independent researcher and develop an understanding of β-cell physiology.
项目概要
1 型糖尿病 (T1D) 是一种自身免疫性疾病,由产生胰岛素的β-胰岛素进行性破坏引起。
细胞免疫耐受的丧失是诱发基因和环境因素的结果。
目前尚不清楚自身免疫攻击的确切触发因素。
多年来,β 细胞氧化应激是导致 β 细胞功能障碍和破坏的关键因素。
认为 1 型糖尿病患者的 β 细胞已被完全破坏,但最近,这一教条已被打破。
同样,长期 T1D 患者体内残留的胰岛素阳性 β 细胞也受到了挑战。
在 T1D 的非肥胖糖尿病 (NOD) 小鼠模型中,有一个 β 细胞亚群能够
这些数据表明存在能够适应长期免疫攻击的β细胞群。
并在高压力条件下生存 为了以这些发现为基础,该提案的中心目标是
定义促进 β 细胞存活和预防 T1D 的途径。
我将测试 T1D 发病机制中抗氧化反应减少 β 细胞 ROS 来抑制胰岛免疫原性。
这一假设通过目标1中的两个具体实验,将研究β细胞如何选择性丧失。
NRF2 有助于自身免疫性糖尿病的发展。在目标 2 中,我将确定其控制机制。
β 细胞 ROS 在早期 T1D 发病机制中的作用的完成将决定其功能作用和作用。
重要的是,这项工作将确定预防的新靶标。
糖尿病条件下β细胞的破坏,以及作为这项工作的一部分开发和测试的工具可以
在未来的研究中用于针对 β 细胞的靶向治疗或成像探针这些研究也将产生积极的影响。
对早期糖尿病发病机制中胰岛功能的全面了解和对我职业生涯的影响。
使用尖端技术将使我能够发展成为一名科学家,并让我走上实现现实的轨道
该 F31 奖项需要一个为期 2 年的培训计划,旨在
实现 4 个主要目标:1) 加深对糖尿病研究技术和概念的理解,2)
培训用于糖尿病研究的靶向纳米颗粒的生成和使用以及药效学,3) 培训
口头和书面介绍研究成果,包括拨款准备,以及 4) 培训使用和
此外,申请人还将受益于出色的和针对糖尿病研究的小鼠模型的处理。
印第安纳州糖尿病和代谢疾病中心提供的合作研究环境
她的培训也将受益于由以下人员组成的指导和咨询委员会。
由 NIH 资助的精心挑选和组建的多元化团队组成。 总之,拟议的。
学习和培训目标将为申请人提供一个肥沃的培训环境,使她能够
成为一名多才多艺的独立研究人员,并加深对 β 细胞生理学的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alissa N Novak其他文献
Alissa N Novak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
生物抗氧化剂对纤维蛋白原氧化损伤的保护以及纤维化过程的影响
- 批准号:21575102
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
氢分子在妊娠期高血压疾病中对MAPK信号通路的影响
- 批准号:81300500
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
天然酚类抗氧化剂对果蔬表面二噻农杀菌剂光化学转化的影响及其机理研究
- 批准号:21207102
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
抗老化变压器油及其对绝缘纸老化影响的研究
- 批准号:50677073
- 批准年份:2006
- 资助金额:32.0 万元
- 项目类别:面上项目
TA9901配伍EGb761对Tg2576转基因鼠脑内β淀粉样蛋白沉积的影响及其机制
- 批准号:30470904
- 批准年份:2004
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the Role of KEAP1 Germline and Somatic Mutations in Renal Cell Carcinoma
研究 KEAP1 种系和体细胞突变在肾细胞癌中的作用
- 批准号:
10740481 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Kynurenine: a potential link between age-related decreases in bone mass and kidney function
犬尿氨酸:年龄相关的骨量下降与肾功能之间的潜在联系
- 批准号:
10214539 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别: