Bacterial Targets of T3SS Effector Proteases

T3SS 效应蛋白酶的细菌靶标

基本信息

  • 批准号:
    10612861
  • 负责人:
  • 金额:
    $ 7.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-22 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary. Many Gram-negative bacterial pathogens interact with mammalian cells by using secretion systems to inject virulence proteins directly into infected host cells. Some of these injected protein ‘effectors’ are enzymes that modify the structure and inhibit the function of mammalian proteins by catalyzing the addition of unusual post- translational modifications. Type III secretion system (T3SS) effectors play essential roles in virulence and their mechanisms have provided great insight into the functions and components of the innate immune system. T3SS effectors are believed to be inactive until they are injected into host cells, where they then fold into their active conformations. However, recent work with the NleB and SseK glycosyltransferases from E. coli, Citrobacter rodentium, and Salmonella enterica has challenged that dogma. NleB glycosylates and activates the bacterial glutathione synthetase (GshB) enzyme, resulting in enhanced glutathione production and improved C. rodentium survival in oxidative stress conditions. SseK1 is active within Salmonella enterica, where it glycosylates and enhances the activity of several enzymes (GloA, GloB, GloC, and YajL) that are critical to the ability of Salmonella to resist methylglyoxal stress. The studies proposed here seek to extend previous findings and determine the extent to which other T3SS effectors with defined enzymatic activities are active within the bacterium. To do this, the E. coli T3SS effector proteases NleC, NleD, and EspL will be characterized for their intra-bacterial activities. The natural bacterial substrates of these proteases will be identified and the impact of proteolytic activities on pathogen protein abundance will be quantified. Recombinant systems will be developed to monitor the activity of NleC, NleD, and EspL in C. rodentium. The endogenous bacterial substrates of these effector proteases will be identified by using an unbiased, state-of- the-art proteomic approach named ‘terminal amine isotopic labeling of substrates (TAILS)’. The proposed studies represent the first comprehensive analysis of the activities of T3SS effector proteins within the bacterial cell, and as such, are likely to have a lasting, transformative impact on the field by demonstrating that effector functions are not simply limited to their well-known activities in modifying host cell proteins. Such concepts can readily be extended to other pathogens, other enzyme activities, and other secretion systems.
项目摘要。 许多革兰氏阴性细菌病原体通过使用分泌系统注射与哺乳动物细胞相互作用 将毒力蛋白注入直接感染的宿主细胞中,其中一些注射蛋白“效应物”是酶。 通过催化添加不寻常的后缀来改变哺乳动物蛋白质的结构并抑制其功能 III 型分泌系统 (T3SS) 效应子在毒力及其毒力中发挥重要作用。 机制提供了对先天免疫系统的功能和组成部分的深入了解。 T3SS 效应器被认为是不活跃的,直到它们被注射到宿主细胞中,然后它们折叠成它们的 然而,最近对大肠杆菌 NleB 和 SseK 糖基转移酶的研究, 啮齿类柠檬酸杆菌和肠沙门氏菌挑战了 NleB 糖基化和激活的教条。 细菌谷胱甘肽合成酶(GshB),导致谷胱甘肽产量增加 提高啮齿类动物在氧化应激条件下的存活率 SseK1 在肠道沙门氏菌中具有活性, 它可以糖基化并增强多种酶(GloA、GloB、GloC 和 YajL)的活性,这些酶是 对于沙门氏菌抵抗甲基乙二醛应激的能力至关重要,本文提出的研究旨在扩展。 先前的发现并确定具有确定酶活性的其他 T3SS 效应子的程度 为此,大肠杆菌 T3SS 效应蛋白酶 NleC、NleD 和 EspL 将被激活。 这些蛋白酶的天然细菌底物将被表征为它们的细菌内活性。 鉴定并量化蛋白水解活性对病原体蛋白质丰度的影响。 将开发重组系统来监测啮齿类动物中 NleC、NleD 和 EspL 的活性。 这些效应蛋白酶的内源性细菌底物将通过使用公正的状态来识别 最先进的蛋白质组学方法称为“底物末端胺同位素标记(TAILS)”。 研究首次对细菌内 T3SS 效应蛋白的活性进行全面分析 细胞,因此,通过证明效应器可能对该领域产生持久的、变革性的影响 功能不仅仅限于其修饰宿主细胞蛋白质的众所周知的活动。 很容易扩展到其他病原体、其他酶活性和其他分泌系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samir Elqaidi其他文献

Samir Elqaidi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
  • 批准号:
    82370423
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
  • 批准号:
    22371216
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
  • 批准号:
    82360519
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
  • 批准号:
    82373410
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
  • 批准号:
    22372162
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
  • 批准号:
    10604535
  • 财政年份:
    2023
  • 资助金额:
    $ 7.25万
  • 项目类别:
Legumain to the rescue: A new ADC linker strategy to address the limitations of cathepsin cleavage
Legumain 来拯救:一种新的 ADC 连接策略,解决组织蛋白酶切割的局限性
  • 批准号:
    10561636
  • 财政年份:
    2022
  • 资助金额:
    $ 7.25万
  • 项目类别:
Waters Xevo TQ-XS system
沃特世 Xevo TQ-XS 系统
  • 批准号:
    10431349
  • 财政年份:
    2022
  • 资助金额:
    $ 7.25万
  • 项目类别:
Legumain to the rescue: A new ADC linker strategy to address the limitations of cathepsin cleavage
Legumain 来拯救:一种新的 ADC 连接策略,解决组织蛋白酶切割的局限性
  • 批准号:
    10342525
  • 财政年份:
    2022
  • 资助金额:
    $ 7.25万
  • 项目类别:
Tools and Methods for the Elucidation of Fatty Acid Amide Cell Signaling Pathways
阐明脂肪酸酰胺细胞信号通路的工具和方法
  • 批准号:
    10310497
  • 财政年份:
    2020
  • 资助金额:
    $ 7.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了