Melanopsin Signal Transduction Studied by FTIR Spectroscopy

通过 FTIR 光谱研究黑视蛋白信号转导

基本信息

项目摘要

DESCRIPTION (provided by applicant): The overall objective of this project is to investigate the molecular basis of signal transduction in human melanopsin (MO), the recently discovered light-receptor in photosensitive retinal ganglion cells, which underlies the control of circadian rhythms and pupillary response. Because melanopsin is involved in a variety of physiological functions including sleep, mental alertness, eating habits, and hormonal levels, as well potentially involved in a variety of disorders including sleep disorders, seasonal affected disorders and glaucoma, the NIH has highlighted melanopsin as a priority for future research. Remarkably, the properties of melanopsin strongly resemble invertebrate rhodopsin instead of the extensively studied vertebrate "visual" rhodopsins. Similarities include a close primary sequence homology and signaling through the Gq-protein (phospholipaseC/inositol triphosphate) pathway instead of the Gt-protein cyclic nucleotide pathway. Importantly, melanopsin and its analog invertebrate rhodopsins such as squid rhodopsin (sRh) serve as models for investigating the signal transduction mechanism in the hundreds of GPCRs in human cells. Such GPCRs signal through the Gq-protein pathway and are inhibited by 2-arrestin2 instead of the more specialized visual 2-arrestin. Prominent examples include serotonin, histamine, adrenergic, muscarinic and calcitonin receptors which are targets of current and potentially new drugs. A key feature of melanopsin and invertebrate rhodopsins but not vertebrate rhodopsins is their optical bistability. This property allows them to be "cycled" between two different stable states using two different colors of light. In this project, we will exploit this two-photon property in order to investigate the detailed structural changes occurring upon light activation in melanopsin, sRh and the complexes they formed with 2- arrestin2 and Gq-protein. This research will be facilitated by the application of several advanced FTIR difference techniques, many developed in our laboratory, in conjunction with site-directed mutagenesis and isotope labeling. Application of this approach has led previously to several milestones including the first detailed characterization of the conformational changes which occur during vertebrate rhodopsin photoactivation and the proton pumping mechanism of bacteriorhodopsin. We have recently demonstrated the ability of this approach to also detect and characterize structural changes in key residues and internal water molecules that lie in the interfacial contact region between membrane protein signaling receptors such as sensory rhodopsin II and its cognate transducer. HtrII In preliminary studies, we have measured static and time resolve FTIR difference spectra of squid rhodopsin and its 2-arrestin2 complex. By using isotope editing, we can characterize conformational changes separately in the receptor and 2-arrestin2 components. The proposed studies will also benefit from our recent development of methods to: i) measure sub-picosecond protein changes; ii) probe minute quantities of membrane proteins including single crystals using time-resolved FTIR microscopy and iii) rapidly in vitro express membrane proteins in nanolipoparticles (NLPs). This work will be facilitated by close collaborations with the laboratories of Dr. J. Navarro at the University of Texas Medical Branch, Galveston who will prepare sRho/2-arrestin2 crystals and perform parallel x-ray crystallographic studies; Dr. W. DeGrip at the University of Nijmegen whose laboratory has expressed and characterized functional recombinant melanopsin and Dr. M. Coleman at the LLNL and UC Davis whose laboratory has developed cell-free techniques to express GPCRs in NLPs. PUBLIC HEALTH RELEVANCE: The overall objective of this project is to investigate the mechanism by which human melanopsin, the recently discovered light-receptor in the retina, controls the body's internal clock as well as pupillary response. Understanding melanopsin is important because it is involved in key physiological processes including sleep, mental alertness, eating habits, and hormonal levels as well as disorders involving these processes. The application of advanced infrared spectroscopic methods developed in our laboratory will allow us to determine the detailed molecular response of melanopsin and the complexes it forms with other proteins to light on time scales as short as one trillionth of a second.
描述(由申请人提供):该项目的总体目标是研究人黑视蛋白(MO)信号转导的分子基础,MO是最近在光敏视网膜神经节细胞中发现的光受体,是昼夜节律和瞳孔控制的基础回复。由于黑视蛋白涉及多种生理功能,包括睡眠、精神警觉性、饮食习惯和激素水平,并且还可能与多种疾病有关,包括睡眠障碍、季节性疾病和青光眼,因此 NIH 已将黑视蛋白列为优先事项以供将来的研究。值得注意的是,黑视蛋白的特性与无脊椎动物视紫红质非常相似,而不是广泛研究的脊椎动物“视觉”视紫红质。相似之处包括密切的一级序列同源性以及通过 Gq 蛋白(磷脂酶 C/三磷酸肌醇)途径而不是 Gt 蛋白环核苷酸途径进行信号传导。重要的是,黑视蛋白及其类似的无脊椎动物视紫红质,如鱿鱼视紫红质 (sRh),可以作为研究人类细胞中数百个 GPCR 信号转导机制的模型。此类 GPCR 通过 Gq 蛋白途径发出信号,并被 2-arrestin2(而不是更专门的视觉 2-arrestin)抑制。突出的例子包括血清素、组胺、肾上腺素、毒蕈碱和降钙素受体,它们是当前和潜在新药物的目标。黑视蛋白和无脊椎动物视紫红质(而非脊椎动物视紫红质)的一个关键特征是它们的光学双稳定性。这一特性允许它们使用两种不同颜色的光在两种不同的稳定状态之间“循环”。在这个项目中,我们将利用这种双光子特性来研究黑视蛋白、sRh 及其与 2-抑制蛋白2 和 Gq 蛋白形成的复合物在光激活时发生的详细结构变化。这项研究将通过几种先进的 FTIR 差异技术的应用来促进,其中许多技术是我们实验室开发的,并结合定点诱变和同位素标记。这种方法的应用此前已经取得了几个里程碑,包括首次详细表征脊椎动物视紫红质光激活过程中发生的构象变化和细菌视紫红质的质子泵送机制。我们最近证明了这种方法还能够检测和表征关键残基和内部水分子的结构变化,这些残基和内部水分子位于膜蛋白信号传导受体(例如感觉视紫红质 II 及其同源传感器)之间的界面接触区域。 HtrII 在初步研究中,我们测量了鱿鱼视紫红质及其 2-arrestin2 复合物的静态和时间分辨 FTIR 差异光谱。通过使用同位素编辑,我们可以分别表征受体和 2-arrestin2 成分的构象变化。拟议的研究也将受益于我们最近开发的方法:i)测量亚皮秒蛋白质变化; ii) 使用时间分辨 FTIR 显微镜探测微量膜蛋白(包括单晶),以及 iii) 在纳米脂质颗粒 (NLP) 中快速体外表达膜蛋白。这项工作将通过与加尔维斯顿德克萨斯大学医学分部 J. Navarro 博士实验室的密切合作来促进,该实验室将制备 sRho/2-arrestin2 晶体并进行平行 X 射线晶体学研究;奈梅亨大学的 W. DeGrip 博士的实验室已经表达并表征了功能性重组黑视蛋白,LLNL 和加州大学戴维斯分校的 M. Coleman 博士的实验室开发了在 NLP 中表达 GPCR 的无细胞技术。 公共健康相关性:该项目的总体目标是研究人类黑视蛋白(最近在视网膜中发现的光感受器)控制人体内部时钟以及瞳孔反应的机制。了解黑视蛋白很重要,因为它涉及关键的生理过程,包括睡眠、精神警觉性、饮食习惯和激素水平以及涉及这些过程的疾病。应用我们实验室开发的先进红外光谱方法将使我们能够确定黑视蛋白及其与其他蛋白质形成的复合物在短至万亿分之一秒的时间尺度上的详细分子响应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KENNETH J ROTHSCHILD其他文献

KENNETH J ROTHSCHILD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KENNETH J ROTHSCHILD', 18)}}的其他基金

Melanopsin Signal Transduction Studied by FTIR Spectroscopy
通过 FTIR 光谱研究黑视蛋白信号转导
  • 批准号:
    8271423
  • 财政年份:
    2010
  • 资助金额:
    $ 29.85万
  • 项目类别:
Melanopsin Signal Transduction Studied by FTIR Spectroscopy
通过 FTIR 光谱研究黑视蛋白信号转导
  • 批准号:
    7987558
  • 财政年份:
    2010
  • 资助金额:
    $ 29.85万
  • 项目类别:
FTIR STUDY OF SIGNAL TRANSDUCTION IN SENSORY RHODOPSINS
感觉视紫红质信号转导的 FTIR 研究
  • 批准号:
    7007312
  • 财政年份:
    2005
  • 资助金额:
    $ 29.85万
  • 项目类别:
FTIR STUDY OF SIGNAL TRANSDUCTION IN SENSORY RHODOPSINS
感觉视紫红质信号转导的 FTIR 研究
  • 批准号:
    7342112
  • 财政年份:
    2005
  • 资助金额:
    $ 29.85万
  • 项目类别:
FTIR STUDY OF SIGNAL TRANSDUCTION IN SENSORY RHODOPSINS
感觉视紫红质信号转导的 FTIR 研究
  • 批准号:
    7175444
  • 财政年份:
    2005
  • 资助金额:
    $ 29.85万
  • 项目类别:
FTIR STUDY OF SIGNAL TRANSDUCTION IN SENSORY RHODOPSINS
感觉视紫红质信号转导的 FTIR 研究
  • 批准号:
    6873519
  • 财政年份:
    2005
  • 资助金额:
    $ 29.85万
  • 项目类别:
FTIR Study of Signal Transduction in Sensory Rhodopsins
感觉视紫红质信号转导的 FTIR 研究
  • 批准号:
    7737309
  • 财政年份:
    2005
  • 资助金额:
    $ 29.85万
  • 项目类别:
SITE DIRECTED ISOTOPE LABELING OF MEMBRANE PROTEINS
膜蛋白的定点同位素标记
  • 批准号:
    6309035
  • 财政年份:
    2000
  • 资助金额:
    $ 29.85万
  • 项目类别:
SITE DIRECTED ISOTOPE LABELING OF MEMBRANE PROTEINS
膜蛋白的定点同位素标记
  • 批准号:
    6281473
  • 财政年份:
    1998
  • 资助金额:
    $ 29.85万
  • 项目类别:
SITE DIRECTED ISOTOPE LABELING OF MEMBRANE PROTEINS
膜蛋白的定点同位素标记
  • 批准号:
    6251973
  • 财政年份:
    1997
  • 资助金额:
    $ 29.85万
  • 项目类别:

相似国自然基金

社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
  • 批准号:
    82370895
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
  • 批准号:
    52305599
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
  • 批准号:
    52378051
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
  • 批准号:
    12305308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Phosphodiesterases govern nuclear cAMP signaling for gene expression
磷酸二酯酶控制基因表达的核 cAMP 信号传导
  • 批准号:
    10717183
  • 财政年份:
    2023
  • 资助金额:
    $ 29.85万
  • 项目类别:
Investigating the molecular details of assembly, disassembly and trafficking of GPCR-arrestin complexes
研究 GPCR-arrestin 复合物组装、拆卸和运输的分子细节
  • 批准号:
    10654850
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
Investigating the molecular details of assembly, disassembly and trafficking of GPCR-arrestin complexes
研究 GPCR-arrestin 复合物组装、拆卸和运输的分子细节
  • 批准号:
    10507234
  • 财政年份:
    2022
  • 资助金额:
    $ 29.85万
  • 项目类别:
Role of S-Nitrosylation on Beta-Adrenergic Signaling in Cardiac Injury and Repair
S-亚硝基化对 β-肾上腺素能信号传导在心脏损伤和修复中的作用
  • 批准号:
    10180605
  • 财政年份:
    2021
  • 资助金额:
    $ 29.85万
  • 项目类别:
Role of S-Nitrosylation on Beta-Adrenergic Signaling in Cardiac Injury and Repair
S-亚硝基化对 β-肾上腺素能信号传导在心脏损伤和修复中的作用
  • 批准号:
    10605353
  • 财政年份:
    2021
  • 资助金额:
    $ 29.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了