POST-TRANSCRIPTIONAL REGULATION OF CELL FATE IN EARLY MAMMALIAN DEVELOPMENT

早期哺乳动物发育中细胞命运的转录后调控

基本信息

项目摘要

Post-transcriptional regulation by RNA-binding proteins (RBPs) and microRNAs (miRNAs) orchestrate diverse molecular and cellular mechanisms that pattern early mammalian development from embryonic stem cells (ESCs) through gastrulation and lineage commitment. The RBPs Ago2 (Argonaute-2) and IRP (iron regulatory proteins) respectively coordinate miRNA-mediated regulation and cellular iron regulation, mechanisms essential for the proper execution of early embryonic development. In human development, cellular iron regulation is important for non-hematopoietic tissue development, including neurogenesis and gut development, in addition to erythropoiesis. However, the identities and functional roles of miRNA- and IRP-bound targets in cell fate decisions during early embryonic development are largely unknown. A comprehensive understanding of the dynamic relationships of IRPs, miRNAs, and their functional targets during this critical developmental window is needed and can provide a roadmap for functional rewiring in stem/progenitor cell-based regenerative therapies. The central hypothesis of this proposal is that IRP and miRNAs function cooperatively and dynamically on targets that are important regulators of cell fate transitions during mammalian development. As a molecular biologist and pathologist, my long-term goal is to understand and use these integrated pathways of post-transcriptional control to devise new tools and approaches for functional rewiring in stem/progenitor cell-based regenerative therapies. The objective of this project is to dissect the specific roles of post-transcriptional regulation by miRNAs and IRPs on cell fate decisions in early mammalian development and to build platforms to model cellular iron throughout early mammalian development. This project objective will be achieved by 1) determining the impact of IRP and miR-290-mediated regulation on Profilin-2, a known regulator of ESC differentiation, 2) identifying and functionally dissecting the global network of bound IRP and miRNA targets, and 3) developing biosensor platforms that model cellular iron utilization in vitro and in vivo during early embryonic development. The proposed studies are the core components of the Mentored Clinical Scientist Development Award (K08) for Dr. Carolyn Sangokoya. Dr. Sangokoya is a board-certified Anatomic Pathologist with subspeciality expertise in surgical and gastrointestinal/hepatobiliary pathology. This proposal encompasses a five-year plan to address gaps in specific research and professional skills as she transitions to independence as a physician-scientist. This grant is a training vehicle for Dr. Sangokoya to 1) build knowledge in statistical methods for functional genomics, 2) learn and expand technical skills in generating mouse models, 3) perform single-cell RNA-sequencing studies, and 4) develop professional scientific leadership and lab management skills in transition to leading a successful laboratory. To achieve these goals, Dr. Sangokoya and her multidisciplinary scientific advisory and mentoring team have devised a 5-year career development plan. The proposed training, didactics, and research in the rich research environment at UCSF will ensure a successful and productive transition to independence.
RNA结合蛋白(RBP)和microRNA(miRNA)编排多样的转录后调节 分子和细胞机制,使胚胎干细胞早期哺乳动物发育 (ESC)通过胃和谱系承诺。 RBPS AGO2(Argonaute-2)和IRP(铁调节性 蛋白质)分别协调miRNA介导的调节和细胞铁调节,机制必不可少 适当地执行早期胚胎开发。在人类发展中,细胞铁调节是 对于非山毛质组织的发展至关重要,包括神经发生和肠道发育,此外 致红细胞生成。但是,miRNA和IRP结合靶标在细胞命运中的身份和功能作用 早期胚胎发育期间的决策在很大程度上是未知的。对 IRP,miRNA及其功能目标在此关键发展窗口中的动态关系是 需要并可以提供用于在基于STEM/祖细胞细胞再生疗法的功能重新布线的路线图。 该提议的中心假设是IRP和miRNA在目标上合作和动态起作用 这是哺乳动物发育过程中细胞命运转变的重要调节因子。作为分子生物学家 和病理学家,我的长期目标是了解和使用这些转录后的这些综合途径 控制基于STEM/祖细胞再生的新工具和方法,用于重新布线 疗法。该项目的目的是剖析miRNA的转录后调节的特定作用 和IRP关于早期哺乳动物发育中细胞命运决策的IRP,并建立平台以建模细胞铁 在整个早期哺乳动物的发展中。该项目目标将通过1)确定影响 IRP和miR-290介导的对Profilin-2的调节(已知的ESC分化调节剂),2)识别 并在功能上剖析绑定的IRP和miRNA靶标的全局网络,3)开发生物传感器 在早期胚胎发育过程中,在体外和体内建模细胞铁的平台。这 拟议的研究是指导博士临床科学家发展奖(K08)的核心组成部分。 Carolyn Sangokoya。 Sangokoya博士是一名具有董事会认证的解剖病理学家,具有专业知识 手术和胃肠道/肝胆管病理学。该提案涵盖了一个五年计划来解决 当她转变为医生科学家独立时,特定研究和专业技能的差距。这 格兰特(Grant 2)学习和扩大生成鼠标模型的技术技能,3)执行单细胞RNA测序研究, 4)发展专业的科学领导力和实验室管理技能,以领导成功 实验室。为了实现这些目标,Sangokoya博士及其多学科科学咨询和指导 团队制定了一项为期5年的职业发展计划。提议的培训,教学法和富人的研究 UCSF的研究环境将确保成功且富有成效的独立性过渡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CAROLYN O SANGOKOYA其他文献

CAROLYN O SANGOKOYA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CAROLYN O SANGOKOYA', 18)}}的其他基金

POST-TRANSCRIPTIONAL REGULATION OF CELL FATE IN EARLY MAMMALIAN DEVELOPMENT
早期哺乳动物发育中细胞命运的转录后调控
  • 批准号:
    10366001
  • 财政年份:
    2021
  • 资助金额:
    $ 14.24万
  • 项目类别:
POST-TRANSCRIPTIONAL REGULATION OF CELL FATE IN EARLY MAMMALIAN DEVELOPMENT
早期哺乳动物发育中细胞命运的转录后调控
  • 批准号:
    10191941
  • 财政年份:
    2021
  • 资助金额:
    $ 14.24万
  • 项目类别:

相似海外基金

Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
  • 批准号:
    10725416
  • 财政年份:
    2023
  • 资助金额:
    $ 14.24万
  • 项目类别:
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
  • 批准号:
    10817516
  • 财政年份:
    2023
  • 资助金额:
    $ 14.24万
  • 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
  • 批准号:
    10750357
  • 财政年份:
    2023
  • 资助金额:
    $ 14.24万
  • 项目类别:
Glia Exclusive Gene Therapy
胶质细胞独家基因疗法
  • 批准号:
    10739502
  • 财政年份:
    2023
  • 资助金额:
    $ 14.24万
  • 项目类别:
Development of Utrophin Site Blocking Oligos (SBOs) to Treat Duchenne Muscular Dystrophy (DMD)
开发 Utropin 位点封闭寡核苷酸 (SBO) 来治疗杜氏肌营养不良症 (DMD)
  • 批准号:
    10678195
  • 财政年份:
    2023
  • 资助金额:
    $ 14.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了