Investigating the oxidative chemistry and electron transfer in polysaccharide monooxygenases
研究多糖单加氧酶的氧化化学和电子转移
基本信息
- 批准号:10611373
- 负责人:
- 金额:$ 6.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-18
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAffectAgricultureAminesAmino AcidsAntibiotic ResistanceBacillus anthracisBindingBiochemicalBiomassBuffersCarbonCatalysisCelluloseChemistryChromatographyCollaborationsConsumptionCopperCysteineCytochrome aCytochromesDeuteriumDrug DesignEducational process of instructingElectron TransportElectronsEnterococcus faecalisEnzymesFamilyFlavinsFutureGallic acidHealthHistidineHumanHydrogen BondingHydroxylationImidazoleIn VitroInfectionIonsIsotope LabelingIsotopesKineticsLegionella pneumophilaLibrariesLyticMass Spectrum AnalysisMeasurementMeasuresMethanolMixed Function OxygenasesMolecularMutagenesisMutateN-terminalNatureOhioOpticsOrganismOxidasesOxidation-ReductionOxidoreductaseOxygenasesPathogenicityPerformancePhotosensitizing AgentsPhysiologicalPichiaPlantsPlayPolysaccharidesPost-Translational Protein ProcessingPropertyProteinsProtonsReactionRecombinantsReducing AgentsResearchResearch DesignResolutionRiceRoleSerratia marcescensSolventsSpectrum AnalysisSurfaceSystemTimeUp-RegulationVirulence Factorsabsorptionascorbatedepolymerizationemission spectroscopyexperimental studyexpression vectorinducible gene expressioninsightinterestmutantoxidationpathogenpressuresmall moleculesuccess
项目摘要
Project summary
Polysaccharide monooxygenases (PMOs) also known as lytic PMOs (LPMOs) are a recently identified class of
enzymes that oxidatively degrade polysaccharides. Interest in PMOs has largely been focused on harnessing
their action for plant biomass degradation to generate biofuels. Recent interest has turned to a role in
enhancing pathogenicity. PMOs are found in human and plant pathogens. For example Magnaportha oryzae,
the organism that causes rice blast, contains a PMO involved in plant colonization. Upregulation of putative
PMOs is also found in the human infection Enterococcus faecalis, and predicted PMOs have been found in
Serratia marcescens, Bacillus anthracis, and Legionella pneumophila. The emerging role of PMOs as virulence
factors suggest that they will be an important target with broad implication in human health. Understanding
PMOs mechanism of action will inform future studies and drug design. PMOs depolymerize cellulose through
oxidative hydroxylation at the C1 or C4 carbon leading to cleavage of the glycosidic bond. Polysaccharide
oxidation occurs through PMO-catalyzed reductive activation of O2, which then inserts a O-atom into a C1 or
C4 C-H bond. All PMOs are thought to share a common mechanism, thus conserved active site residues offer
hints as to function. There are three regions of highly conserved amino acids. The first is termed the histidine
brace which binds copper in the active site. The two other regions are composed of Trp and Tyr chains that
have been speculated to serve as conduits for electron transport. The PMO reaction requires the well-timed
delivery of multiple electrons to the copper center. Cellobiose dehydrogenase (CDH) has been identified as a
redox partners with fungal PMOs and is composed of a flavin domain that oxidizes cellobiose which,
subsequently reduces a cytochrome domain. The cytochrome domain is required for the transfer electrons to
PMOs in the catalytic cycle. The studies proposed here seek to answer four main questions: How are electrons
transferred between the CDH and the PMO, what is the temporal nature of the delivery of electrons between
the CDH and the PMO, how can the understanding of this electron delivery system inform us of the active site
mechanism, and how can it be harnessed to observe reactive intermediates? To answer these questions,
CDHs and PMOs will be expressed and purified for kinetic and product profile studies under limited electron
loading. Through mutagenesis, protein modification, these CDHs and PMOs will include new properties that
will perturb the electron transfer chain in a predictable manner providing molecular information on electron
transfer. The protein modification will involve a Ru based photosensitizer that will allow temporal control over
the delivery of electrons. These biochemical experiments will be performed in conjunction with complementary
measurements such as stop-flow absorbance spectroscopy and high-resolution mass spectrometry.
项目摘要
多糖单加氧酶(PMO)也称为裂解PMO(LPMO)是最近确定的一类
氧化降解多糖的酶。对PMO的兴趣主要集中在利用
他们对植物生物量降解产生生物燃料的作用。最近的兴趣转向了
增强致病性。 PMO在人类和植物病原体中发现。例如Magnaportha oryzae,
引起大米爆炸的生物包含参与植物定植的PMO。推定的上调
在人类感染粪肠球菌中也发现了PMO,并且在
Serratia marcescens,炭疽芽孢杆菌和肺炎军团菌。 PMO作为毒力的新兴作用
因素表明,它们将成为重要的目标,对人类健康有广泛的影响。理解
PMOS的作用机制将为未来的研究和药物设计提供信息。 PMOS解聚纤维素通过
C1或C4碳的氧化羟基化导致糖苷键的切割。多糖
氧化是通过PMO催化的O2的还原性激活发生的,然后将O-ATOM插入C1或
C4 C-H键。所有PMO都被认为具有共同的机制,因此保守的活动现场残留物提供
提示功能。高度保守的氨基酸有三个区域。第一个被称为组氨酸
支撑在活性位点结合铜。其他两个区域由TRP和Tyr链组成
被推测是电子传输的导管。 PMO反应需要及时的
将多个电子传递到铜中心。纤维二酶脱氢酶(CDH)已被鉴定为
氧化还原与真菌PMO的合作伙伴,由黄素结构域组成,该结构域氧化了纤维二糖,该结构粒氧化
随后减少了细胞色素域。将电子转移到
催化周期中的PMO。这里提出的研究试图回答四个主要问题:电子如何
转移在CDH和PMO之间,电子之间的递送时间是什么
CDH和PMO,对该电子输送系统的理解如何告知我们活动地点
机制,如何利用观察反应性中间体?要回答这些问题,
在有限的电子下,CDH和PMO将在动力学和产品概况研究中表达和纯化
加载中。通过诱变,蛋白质修饰,这些CDH和PMO将包括新特性
将以可预测的方式扰动电子传输链,从而提供有关电子的分子信息
转移。蛋白质修饰将涉及基于RU的光敏剂,该光敏剂将允许对
电子的传递。这些生化实验将与互补一起进行
测量值,例如停止吸光度光谱和高分辨率质谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Sayler其他文献
Richard Sayler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Sayler', 18)}}的其他基金
Investigating the oxidative chemistry and electron transfer in polysaccharide monooxygenases
研究多糖单加氧酶的氧化化学和电子转移
- 批准号:
10464734 - 财政年份:2022
- 资助金额:
$ 6.97万 - 项目类别:
相似国自然基金
全球农业食品系统的生态毒理及人体健康影响研究
- 批准号:52370193
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
农业支持保护补贴对种植大户非粮化行为的影响机理与政策优化研究
- 批准号:72304270
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区域特色农业品牌对小农户生计资本与农业绿色发展的影响机制及情景模拟研究
- 批准号:42301242
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
农业商业化冲击对中国近代产业发展与空间分布的影响研究
- 批准号:72363003
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
同伴压力对农民参与农业项目行为的影响:基于风险态度和模糊态度传导的实验经济学研究
- 批准号:72363004
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating the oxidative chemistry and electron transfer in polysaccharide monooxygenases
研究多糖单加氧酶的氧化化学和电子转移
- 批准号:
10464734 - 财政年份:2022
- 资助金额:
$ 6.97万 - 项目类别:
Toxicological importance of CYP3A4 catalysis and inhibition
CYP3A4 催化和抑制的毒理学重要性
- 批准号:
9275987 - 财政年份:2016
- 资助金额:
$ 6.97万 - 项目类别:
Tyrosinase Model Complexes using Imidazole Ligands
使用咪唑配体的酪氨酸酶模型复合物
- 批准号:
8396946 - 财政年份:2012
- 资助金额:
$ 6.97万 - 项目类别:
Tyrosinase Model Complexes using Imidazole Ligands
使用咪唑配体的酪氨酸酶模型复合物
- 批准号:
8530040 - 财政年份:2012
- 资助金额:
$ 6.97万 - 项目类别:
Tyrosinase Model Complexes using Imidazole Ligands
使用咪唑配体的酪氨酸酶模型复合物
- 批准号:
8703727 - 财政年份:2012
- 资助金额:
$ 6.97万 - 项目类别: