How do glia remodel the nervous system?
神经胶质细胞如何重塑神经系统?
基本信息
- 批准号:10608973
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-06 至 2024-10-05
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimalsApoptosisAstrocytesAxonBiological AssayBiological MetamorphosisBiological ModelsCell CompartmentationCell Surface ReceptorsCellsCentral Nervous SystemCessation of lifeDataDefectDevelopmentDrosophila genusExcisionExclusionFailureGenesGeneticGoalsHumanImmunoglobulinsIndividualInflammationIntegral Membrane ProteinKnock-outKnowledgeLarvaMammalsMediatingMembraneMethodsModelingMolecularNamesNatureNervous SystemNeuritesNeurodevelopmental DisorderNeurogliaNeuronsNeuropilPathway interactionsPhagocytesPhagocytosisProcessProteinsRNA InterferenceResearchRoleSchizophreniaSignal TransductionSpecific qualifier valueSpecificityStereotypingSynapsesSystemTestingTurtlesVisual SystemVisualizationWorkautism spectrum disordercell typeflyhuman diseasein vivoinsightknock-downneuronal cell bodyneuronal circuitryneurotransmissionnovelreceptorresponsesensory inputtooltranscriptomic profiling
项目摘要
Project Summary
A common feature of nervous systems is that they are initially overpopulated with neurons and over-wired, initially
generating an excessive number of synaptic connections. This is followed by an essential period of remodeling
whereby a subset of extraneous neurons or synaptic connections are removed in order to optimize function in
the adult nervous system. The elimination of cells and pruning of synapses is a process coordinated by neurons
and glia. The selection of specific connections or cells for elimination seems to involve a conversation between
neurons and glia, and the clearance of debris from the nervous system is performed predominantly by phagocytic
glial cells. Previous research has highlighted that the nervous system uses a diversity of molecules and
mechanisms to identify engulfment targets, which appear to be context-specific. However, major gaps still exist
in our knowledge of how neurons identify themselves to be remodeled and how glial cells recognize these dying
or pruning neurons. Studying these processes can potentially lead us to a better understanding of mechanisms
underlying neurodevelopmental disorders such as Autism Spectrum Disorders and Schizophrenia. Our lab has
employed Drosophila as a model system for several reasons including the powerful genetic tools and the
stereotyped nature of one of its remodeling periods—metamorphosis. Through transcriptomic profiling in
phagocytic astrocytes, I identified the transmembrane immunoglobulin superfamily gene borderless. My
preliminary data suggests that Bdl is highly expressed in astrocytes during engulfment periods early in
metamorphosis. Interestingly, loss of both Borderless (Bdl) and the known engulfment receptor Draper (MEGF10
in mammals) resulted in strong suppression of astrocyte engulfment of synapses and neurites. Bdl has been
described to interact with a closely related protein named Turtle, and my preliminary data further suggests Turtle
is specifically localized to neurites and synapses, and excluded from the cell body (the only compartment of the
cell that astrocytes do not engulf). Turtle may therefore act as a molecular tag for astrocytes to recognize
appropriate engulfment targets. In Aim 1 of this study, I will characterize Bdl expression in astrocytes, explore
genetic interactions between Bdl and Draper, and determine which domains of Bdl are essential for engulfment
activity. In Aim 2, I will 1) define genetic interactions between Bdl, Turtle, and Draper, 2) determine the cell
autonomy of Bdl and Turtle in the remodeling of corazonin neurons and 3) determine the subcellular localization
of Turtle positing me to explore Turtle as a molecular tag for specifying neurites for engulfment. My work has the
potential to define two novel components of the astrocytic engulfment machinery, (Bdl and Turtle), explore how
they converge with Draper/MEGF10, and identify Turtle as a neurite/synapse-specific molecular tag that directly
directs astrocyte engulfment activity. This work will significantly advance our understanding of the molecular
basis of neuron-glia signaling during neuronal remodeling, which will be essential for us to understand and treat
neurodevelopmental disorders in humans.
项目摘要
神经系统的一个共同特征是,它们最初被神经元和过度接线的人口过多,最初是
产生过多的突触连接。其次是重塑的必要时期
因此,删除了外部神经元或突触连接的子集,以优化功能
成人神经系统。消除细胞和突触修剪是由神经元协调的过程
和神经胶质。选择特定连接或细胞以消除的选择似乎涉及
神经元和神经胶质以及神经系统中碎屑的清除主要由吞噬细胞进行
神经胶质细胞。先前的研究强调,神经系统使用多种分子,
确定吞噬目标的机制,似乎是特定于上下文的。但是,主要差距仍然存在
在我们了解神经元如何识别自己的重塑以及神经胶质细胞如何识别这些垂死的情况下
或修剪神经元。研究这些过程可能会导致我们更好地理解机制
基本的神经发育障碍,例如自闭症谱系障碍和精神分裂症。我们的实验室有
使用果蝇作为模型系统的原因有几个原因,包括强大的遗传工具和
其重塑时期之一的定型性质 - 变形。通过转录组分析
吞噬的星形胶质细胞,我鉴定了跨膜免疫球蛋白超家族基因无边界。我的
初步数据表明,BDL在早期的吞噬期间在星形胶质细胞中高度表达
变态。有趣的是,丢失无边界(BDL)和已知的吞噬受体draper(MEGF10)
在哺乳动物中)导致星形胶质细胞吞没突触和神经运动。 BDL已经
描述的是与乌龟的紧密相关蛋白质相互作用,我的初步数据表明乌龟
专门定位于神经和突触,并从细胞体中排除(唯一的隔室
星形胶质细胞不会吞噬的细胞)。因此,乌龟可以充当星形胶质细胞识别的分子标签
适当的吞噬目标。在本研究的目标1中,我将表征星形胶质细胞中的BDL表达,探索
BDL和Draper之间的遗传相互作用,并确定BDL的哪些域对于吞噬至关重要
活动。在AIM 2中,我将1)定义BDL,Turtle和Draper之间的遗传相互作用,2)确定细胞
BDL和Turtle在Corazonin神经元的重塑中的自主权,3)确定亚细胞定位
Turtle的象征,将我探索乌龟作为用于指定吞噬神经的分子标签。我的工作有
定义星形胶质细胞吞噬机械(BDL和Turtle)的两个新颖组成部分的潜力,探索
它们与draper/megf10收敛,并将乌龟视为神经/突触特异性的分子标签
指导星形胶质细胞吞噬活动。这项工作将大大提高我们对分子的理解
神经元重塑过程中神经胶质信号的基础,这对于我们了解和治疗至关重要
人类的神经发育障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Yvette De La Torre其他文献
Rachel Yvette De La Torre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Yvette De La Torre', 18)}}的其他基金
相似国自然基金
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
利用可视可控hypocretin神经元凋亡的疾病模型进行发作性睡病发病机制研究
- 批准号:81901346
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
组织器官衰老致退行性演变多示踪剂全身动态PET显像研究
- 批准号:91949121
- 批准年份:2019
- 资助金额:68.0 万元
- 项目类别:重大研究计划
日粮AFB1在反刍动物肝脏中代谢激活和诱导肝细胞凋亡的分子机理研究
- 批准号:31902187
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
阿司匹林丁香酚酯抗氧化应激致血管内皮细胞凋亡的分子机制
- 批准号:31872518
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
REVAMP-PH: REpurposing Valsartan May Protect against Pulmonary Hypertension
REVAMP-PH:重新利用缬沙坦可以预防肺动脉高压
- 批准号:
10642368 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: