Expansion Microscopy
膨胀显微镜
基本信息
- 批准号:10609512
- 负责人:
- 金额:$ 60.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:BindingBiologicalBiological PreservationBiologyBrain MappingCellsCellular StructuresChemicalsCommunitiesComplexConsumptionCryoelectron MicroscopyDemocracyDevelopmentDiamondDiseaseEducational workshopElectron MicroscopyEquipmentFluorescent ProbesFree RadicalsGoalsGrantHigh temperature of physical objectHumanHydrogelsImageInternetLabelLipidsMapsMedicalMethodsMicroscopeMicroscopyNucleic AcidsPaperParaffin EmbeddingPersonsPolymersPrintingProcessProteinsProtocols documentationRNAReagentResearchResolutionResource SharingSamplingShapesSpecimenSpecimen HandlingSpeedSwellingTechnologyTimeTissuesTrainingVisualizationWaterWorkbiological systemscell typecellular imagingcold temperaturehuman tissueimaging modalityinsightinventionnanoimagingnanoscalenew therapeutic targetpreservationscale upskillssuperresolution microscopytechnology developmentultra high resolution
项目摘要
Biomolecules, such as nucleic acids, lipids, and proteins, are nanoscale in size, and often localized with
nanoscale precision with respect to each other, and to cellular structures. Analyzing the nanoscale
configurations of biomolecules in cells and tissues is critical for understanding how they work, as well as how
they go wrong in disease states. Not surprisingly, much effort has been devoted to inventing methods (e.g.,
super-resolution microscopy, cryo-electron microscopy) for nanoimaging biological specimens, primarily in their
preserved state. However, all of these technologies require expensive equipment, and specialized skillsets.
Given that all biological systems involve nanoscale building blocks and their interactions, a major question is
whether nanoimaging can be democratized, so that anyone could do it, without expensive equipment or
extensive training. This grant is a first competitive renewal of our group’s primary grant that supports the
development of a technology that we think could potentially meet this goal. We recently announced that in
contrast to all previous methods for imaging preserved biological specimens, which magnify their images,
specimens could themselves be physically magnified. This technology, which we call expansion microscopy
(ExM), involves equipping key biomolecules or labels within a specimen with anchoring molecules, then
densely and evenly permeating the biological specimen with a mesh of swellable polymer (that binds to the
anchors, thus anchoring key biomolecules or labels to the polymer), softening the specimen to disrupt
endogenous molecular interactions, and adding water to swell the polymer, which in turn pulls the
biomolecules or labels apart from each other. The process is even down to the nanoscale, and thus enables
nanoimaging of cells and tissues on ordinary microscopes. In addition, several recent papers point to an
additional advantage of ExM – by pulling biomolecules apart from each other, you decrowd them for better
labeling by fluorescent probes, sometimes turning invisible biomolecules into visible ones. ExM is already in
use by many hundreds of research groups, with over 250 experimental preprints and papers appearing to date.
Here we propose to make ExM simpler, more powerful, faster, more applicable to human samples, and more
precise in resolution. Specifically, we will (Aim 1) create a unified, simple, high-speed ExM protocol; (Aim 2)
create a unified, simple, high-speed, single-step 20x expansion protocol; (Aim 3) optimize the new unified,
simple, and high-speed ExM protocols for human tissues. We propose a fast-paced, 4 year, technology
development grant, with the goal of delivering, to the entire biology and medical community, a truly
democratized toolbox that enables anyone to do nanoimaging. We will share all protocols as freely as possible
both on the web and through protocol papers, as well as through hosting people at hands-on workshops.
生物分子,例如核酸,脂质和蛋白质,大小为纳米级,通常与
纳米级的精度相对于彼此和细胞结构。分析纳米级
细胞和组织中生物分子的构型对于了解它们的工作方式以及如何
他们在疾病状态下出错。毫不奇怪,已经大力致力于发明方法(例如,
超分辨率显微镜,冷冻电子显微镜),用于纳米影像生物标本,主要在其中
保存状态。但是,所有这些技术都需要昂贵的设备和专业的技能。
鉴于所有生物系统均涉及纳米级的构件及其相互作用,因此一个主要问题是
纳米影像是否可以民主化,以便任何人都可以做到,而无需昂贵的设备或
广泛的培训。这项赠款是我们集团主要赠款的首次竞争续约,该赠款支持
我们认为可能实现这一目标的技术的开发。我们最近宣布
与所有以前的成像保留的生物标本的方法形成对比,该方法放大了图像,
标本本身可能会被物理放大。我们称之为扩展显微镜的技术
(EXM),涉及将标本内的钥匙生物分子或标签与锚定分子装配,然后
密集,甚至用膨胀的聚合物网格渗透生物标本(与
锚点,从而将钥匙生物分子或标签锚定在聚合物上),使样品变软以破坏
内源分子相互作用,并加水以吞咽聚合物,进而拉动了聚合物
生物分子或彼此标签。该过程甚至取决于纳米级,因此可以实现
普通显微镜上细胞和组织的纳米影像学。此外,最近的几篇论文指出了
EXM的额外优势 - 通过将生物分子除外,您可以将它们删除以获得更好
通过荧光探针标记,有时将无形的生物分子变成可见的生物分子。 EXM已经在
迄今为止,数百个研究小组的使用,有250多个实验性预印本和论文。
在这里,我们建议使EXM更简单,更强大,更快,更适用于人类样本等等
精确的分辨率。特别是,我们将(AIM 1)创建一个统一,简单,高速EXM协议; (目标2)
创建一个统一,简单,高速,单步20倍扩展协议; (目标3)优化新的统一,
人体组织的简单和高速EXM方案。我们提出了一项快节奏的4年技术
开发赠款,目的是传递给整个生物学和医学界
民主化的工具箱,使任何人都可以进行纳米影像学。我们将尽可能免费共享所有协议
无论是在网络上还是通过协议论文,以及通过在动手讲习班上托管人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward S. Boyden其他文献
Procédés et compositions destinés à diminuer la douleur chronique
慢性悲伤的进程和作曲
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;J. Eisenach;Kenneth P. Greenberg;Alan Horsager;Benjamin C. Matteo;Douglas G. Ririe;Christian T. Wentz - 通讯作者:
Christian T. Wentz
Canal à cations activés par la lumière et ses utilisations
运河 à 阳离子 activés par la lumière et ses utilizations
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Edward S. Boyden;Karl Deisseroth - 通讯作者:
Karl Deisseroth
Contribution of the orbitofrontal cortex to inference based on specific stimulus-reward relationships
眶额皮质对基于特定刺激-奖励关系的推理的贡献
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Masaaki Ogawa;Seiya Ishino;Kota Tokuoka;Tadashi Isa;Brian D. Allen;Amy S. Chuong ;Edward S. Boyden;Naoya Oishi;Im Snaghun;Takeshi Yamada - 通讯作者:
Takeshi Yamada
43.5 PIONEERING TOMORROW’S BRAIN RESEARCH TECHNOLOGIES
- DOI:
10.1016/j.jaac.2021.07.273 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Edward S. Boyden - 通讯作者:
Edward S. Boyden
O3-6-04. Optogenetically induced motor evoked potentials in mice
- DOI:
10.1016/j.clinph.2017.06.011 - 发表时间:
2017-09-01 - 期刊:
- 影响因子:
- 作者:
Fumiaki Yoshida;Edward S. Boyden - 通讯作者:
Edward S. Boyden
Edward S. Boyden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward S. Boyden', 18)}}的其他基金
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10487389 - 财政年份:2021
- 资助金额:
$ 60.53万 - 项目类别:
Mechanisms of pathology and neuronal hyperactivity in a memory circuit in Alzheimer's disease
阿尔茨海默病记忆回路的病理学和神经元过度活跃机制
- 批准号:
10663344 - 财政年份:2021
- 资助金额:
$ 60.53万 - 项目类别:
Multiplexed Nanoscale Protein Mapping Through Expansion Microscopy and Immuno-SABER
通过膨胀显微镜和免疫 SABRE 进行多重纳米级蛋白质图谱
- 批准号:
10088537 - 财政年份:2020
- 资助金额:
$ 60.53万 - 项目类别:
High-throughput approaches to local and long-range synaptic connectivity
局部和远程突触连接的高通量方法
- 批准号:
10025780 - 财政年份:2020
- 资助金额:
$ 60.53万 - 项目类别:
RNA Scaffolds for Cell Specific Multiplexed Neural Observation
用于细胞特异性多重神经观察的 RNA 支架
- 批准号:
9981014 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9369530 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
High-Performance Imaging Through Scattering Living Tissue
通过散射活组织进行高性能成像
- 批准号:
9978808 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
Scalable Cell- and Circuit-Targeted Electrophysiology
可扩展的细胞和电路靶向电生理学
- 批准号:
9893932 - 财政年份:2017
- 资助金额:
$ 60.53万 - 项目类别:
相似国自然基金
仿生抗逆性材料的设计制备及其在生物样本冷冻保存中的应用
- 批准号:22275197
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
川黔地区新元古界灯影组热液铅锌矿中超痕量生物分子保存机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
川黔地区新元古界灯影组热液铅锌矿中超痕量生物分子保存机制的研究
- 批准号:42102185
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于温敏磁性水凝胶材料对循环肿瘤细胞的保存及机制研究
- 批准号:21908160
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
柴达木盆地蒸发盐中生物分子的保存及天体生物学意义
- 批准号:41903055
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of BET proteins in pathological cardiac remodeling
BET蛋白在病理性心脏重塑中的作用
- 批准号:
10538142 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
The role of cis-regulatory elements in the inheritance of transcriptional memory through mitosis.
顺式调节元件在通过有丝分裂遗传转录记忆中的作用。
- 批准号:
10751881 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
- 批准号:
10604872 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别:
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
$ 60.53万 - 项目类别: