Enhancing the Cloud-Readiness of Perceptual Computing Through Data Standardization Software
通过数据标准化软件增强感知计算的云就绪性
基本信息
- 批准号:10609245
- 负责人:
- 金额:$ 26.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-28 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdoptionAlgorithmsArchitectureArtificial IntelligenceBehavioral SciencesBrain imagingCollaborationsCollectionCommunitiesComputational algorithmComputer Vision SystemsComputer softwareDataData AnalysesData FilesData SetDatabasesDevelopmentDockingEnvironmentFaceGenerationsGoalsHeart RateHumanIndividualIndustryInvestmentsJudgmentLanguageMeasuresMedicineMetadataMonitorMovementOutputParentsParticipantPediatric HospitalsPhiladelphiaPredictive AnalyticsPsychophysiologyPythonsReadinessReport (document)ResearchResearch PersonnelSeriesSiteSocial BehaviorSoftware EngineeringSoftware ToolsSpecific qualifier valueStructureTestingUnited States National Institutes of HealthVisualbiomedical imagingcloud basedcollegecomputational pipelinesdata formatdata repositorydata standardsdata streamsdata structureemotional behaviorexperienceflexibilityimage processingimprovedinnovationmemberopen sourcerepositorysensorsuccesstoolwearable device
项目摘要
ABSTRACT
Behavioral science is in the midst of a paradigm shift away fromhuman judgment and toward rigorous perceptual
computing (PC) and investment in human predictive analytics. As a part of three separate NIH R01s (including
the Parent R01 [MH125958]), our team is developing open-source software tools to exquisitely measure social
and emotional behavior, including tools to quantify facial movements, body actions, and language.
Unfortunately, the field of perceptual computing currently has no agreed-upon standard for organizing,
maintaining, and curating large audio-visual datasets, and the myriad data streams that accompany them (for
example, simultaneous psychophysiology recordings from wearable devices). The absence of such a standard
is a major impediment to innovation in perceptual computing, as it hinders the development of large -scale
computational pipelines and algorithm optimizations that cloud applications require. The purpose of this
Supplement is to directly address this problemthough the creation of acommon data structure ready for adoption
and iteration by the field of PC, along with a set of basic tools for working with data that follow this structure. The
parent R01 for this Supplement is an ideal context in which to develop such a standard, as it involves the
collection of more than 3000 individual audio-visual files across two sites (The Children’s Hospital of Philadelphia
and Baylor College of Medicine). In other words, the parent R01 is a microcosm of the larger challenge facing
the field – how to effectively and seamlessly integrate separate datasets in ways that supports robust and highly
replicable analysis paths. This Supplement to our R01 will address this challenge by developing an open-source
Sensor Data Structure (SDS) – a data generation, storage, and basic processing standard for use by the
perceptual computing community – along with open-source software tools and Container environments to
generate and validate data. We propose to parallel the achievements by highly successful NIH -supported
Biomedical Imaging Data Structure (BIDS), which was developed to address an analogous problem in the field
of brain imaging (e.g., the need to harmonize and curate large multicenter datasets). Although the Parent R01
is staffed for collecting and analyzing data, this Supplement would provide three new deliverables, all
implemented via the addition of software engineer with industry experience: 1) creation of the data structure, 2)
creation of a Python module and Container environment for implementing the standard, and 3) posting and
monitoring these two deliverables publicly on GitHub. This is acritical step toward our ultimate goal of developing
PC tools that are “cloud-ready”, and in widespread use by the PC community.
抽象的
行为科学正处于从人类判断转向严格感知的范式转变之中
作为三个独立的 NIH R01(包括)的一部分。
Parent R01 [MH125958]),我们的团队正在开发开源软件工具来精确测量社交
和情绪行为,包括量化面部动作、身体动作和语言的工具。
不幸的是,感知计算领域目前还没有统一的组织标准,
维护和管理大型视听数据集以及伴随它们的无数数据流(例如
例如,可穿戴设备的同步心理生理学记录)缺乏这样的标准。
是感知计算创新的主要障碍,因为它阻碍了大规模计算的发展
云应用程序所需的计算管道和算法优化。
补充是通过创建一个可供采用的通用数据结构来直接解决这个问题
以及 PC 领域的迭代,以及一组用于处理遵循此结构的数据的基本工具。
本补充文件的母版 R01 是制定此类标准的理想环境,因为它涉及
收集了两个地点的 3000 多个个人视听文件(费城儿童医院)
和贝勒医学院)换句话说,母公司 R01 是所面临的更大挑战的一个缩影。
该领域 - 如何以支持稳健和高度支持的方式有效且无缝地集成单独的数据集
可复制的分析路径。我们的 R01 补充文件将通过开发开源解决方案来应对这一挑战。
传感器数据结构 (SDS) – 供传感器使用的数据生成、存储和基本处理标准
感知计算社区 – 以及开源软件工具和容器环境
我们建议通过 NIH 支持的非常成功的成果来生成和验证数据。
生物医学成像数据结构(BIDS),其开发是为了解决该领域的类似问题
脑成像(例如,需要协调和整理大型多中心数据集)。
配备了收集和分析数据的人员,本补充文件将提供三个新的可交付成果,全部
通过增加具有行业经验的软件工程师来实施:1)创建数据结构,2)
创建用于实施标准的 Python 模块和容器环境,以及 3) 发布和
在 GitHub 上公开监控这两个可交付成果,这是实现我们开发最终目标的关键一步。
“云就绪”的 PC 工具,并被 PC 社区广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN David HERRINGTON其他文献
JOHN David HERRINGTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN David HERRINGTON', 18)}}的其他基金
Ethical Perspectives Towards Using Smart Contracts for Patient Consent and Data Protection of Digital Phenotype Data in Machine Learning Environments
在机器学习环境中使用智能合约获得患者同意和数字表型数据数据保护的伦理视角
- 批准号:
10599498 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Ethical and Human Factors Impacting Successful Translation of Perceptual Computing to Improve Clinical Care
影响感知计算成功转化以改善临床护理的伦理和人为因素
- 批准号:
10680488 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Ethical and Human Factors Impacting Successful Translation of Perceptual Computing to Improve Clinical Care
影响感知计算成功转化以改善临床护理的伦理和人为因素
- 批准号:
10502082 - 财政年份:2022
- 资助金额:
$ 26.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10594051 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10183399 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
Optimized Affective Computing Measures of Social Processes and Negative Valence in Youth Psychopathology
青年精神病理学中社会过程和负价的优化情感计算措施
- 批准号:
10382366 - 财政年份:2021
- 资助金额:
$ 26.02万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
HIV Clinic-based Screening for Geriatric Syndromes in Older Adults with HIV
基于艾滋病毒临床的艾滋病毒感染者老年综合症筛查
- 批准号:
10761940 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
- 批准号:
10890393 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别:
ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
- 批准号:
10810953 - 财政年份:2023
- 资助金额:
$ 26.02万 - 项目类别: