Defining the molecular regulators of valvular delamination via multi-omic dissection of Ebstein’s Anomaly
通过 Ebstein 异常的多组学解剖定义瓣膜分层的分子调节因子
基本信息
- 批准号:10606574
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdultAnatomyApicalAutomobile DrivingBar CodesBiologicalBiological AssayBiological ModelsBiologyBlood flowCardiacCell CommunicationCell Differentiation processCell MaturationCell physiologyCellsChildhoodChromatinClinicalCollaborationsComplexCongenital Heart DefectsDataDefectDevelopmentDiseaseDissectionDoctor of PhilosophyDyesEbstein&aposs AnomalyElectrophysiology (science)ElementsEndotheliumEventFailureFellowshipFosteringFunctional disorderFutureGene Expression ProfileGenomicsGoalsHeartHeart AtriumHeart TransplantationHeart ValvesHuman GeneticsIndividualLateralLocationMachine LearningMaintenanceMapsMediatingMentorshipMesenchymalMesenchymeMolecularMorbidity - disease rateMorphogenesisMorphologyMusMuscleMyocardialMyocardiumNational Research Service AwardsOperative Surgical ProceduresPathogenesisPatientsPhenotypePopulationPreceptorshipProcessProsthesisRNARegenerative MedicineRegulationResearchResolutionRight ventricular structureScientistSecondary toSecureSignal PathwaySignal TransductionSlideSourceSurgeonSystemTechniquesTestingTherapeuticTimeTissue SampleTrainingTricuspid valve structureVariantVentricularcardiac tissue engineeringcareerclinical trainingepigenomicsepithelial to mesenchymal transitiongene regulatory networkgenetic analysishigh throughput screeninghuman diseasehuman tissuein vivo Modelinformation gatheringinnovationinterstitial cellmRNA Expressionmalformationmortalitymouse modelmultiple omicsnovelnovel therapeuticspatient orientedperiostinpharmacologicprogramsprospectivesingle cell sequencingsingle-cell RNA sequencingspatiotemporalstem cell biologytooltranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Cardiac valves are critical to the maintenance of unidirectional blood flow in the heart. Congenital and acquired
valvulopathies are a major source of morbidity and mortality in both the pediatric and adult populations. Current
therapeutic strategies are limited, often requiring surgical replacement with suboptimal prostheses.
Valvulogenesis begins with formation of the endocardial cushions via epithelial-to-mesenchymal transition
(EMT). Many of the signaling pathways regulating this EMT event have been defined; however, little is known
about the molecular regulators of post-EMT valvulogenesis. Ebstein’s Anomaly, a rare congenital heart defect,
is characterized by variably dysplastic, muscularized tricuspid valve leaflets that are often tethered to the
underlying myocardium, resulting in apical displacement of the annulus and atrialization of the right ventricle.
This defect is often attributed to a failure of valvular delamination – a critical morphogenetic step of post-EMT
valvulogenesis during which the primordial valve leaflets separate from the underlying myocardium. Previous
studies suggest that altered differentiation dynamics of valvular interstitial cells (VICs) may contribute to the
pathogenesis of this valvular defect. I propose to define the molecular regulators of valvular delamination
via a multi-omic dissection of Ebstein’s Anomaly, leveraging an Ebstein’s Anomaly murine model system,
primary human tissue, and human genetics data. In my first aim, I will use spatiotemporal single cell RNA
sequencing and human genetics analyses to identify the atrioventricular cushion signaling interactions regulating
valvular delamination. In my second aim, I will use an integrated single cell RNA/ATAC sequencing approach to
define the gene regulatory networks driving VIC fate determination. My primary sponsor, Dr. Deepak Srivastava,
has extensive expertise in developmental cardiac biology, human genetics, and stem cell biology. My co-
sponsor, Dr. Chun (Jimmie) Ye, has an expertise in experimental and computational single cell genomics. Their
collective expertise will assure that I receive the necessary training and mentorship to complete the proposed
research. To obtain the rare tissue samples required for my project, I have formed a multi-center collaboration
with two high volume Ebstein’s Anomaly patient centers. Additionally, I have secured expertise in human
genetics and machine learning from Dr. Jingjing Li, Ph.D., in support of the human genetics component of my
project. Concurrently, I am engaging in a longitudinal clinical preceptorship in pediatric cardiothoracic surgery
with my clinical training co-sponsor, Dr. Peter Kouretas, Surgical Director of the UCSF Pediatric Heart
Transplantation Program. Overall, the proposed research will elucidate previously uncharacterized mechanisms
of late atrioventricular valvular morphogenesis and inform future efforts toward the development of novel
regenerative-medicine based therapeutics for congenital and acquired valvulopathies. F30 NRSA fellowship
support would foster my expertise in developmental cardiac biology and computational genomics, furthering me
toward my ultimate career goal of becoming an academic pediatric cardiothoracic surgeon-scientist.
项目摘要/摘要
心脏瓣膜对于维持心脏的单向血流至关重要。先天性和被收购
瓣膜病是小儿和成人人群中发病率和死亡率的主要来源。当前的
治疗策略是有限的,通常需要用次优的假体进行手术替代。
瓣膜发生始于通过上皮到间质转变形成心内膜垫
(EMT)。已经定义了调节此EMT事件的许多信号通路;但是,鲜为人知
关于EMT后瓣膜发生的分子调节剂。 Ebstein的异常,一种罕见的先天性心脏缺陷,
其特征是多样性发育不良,肌肉发达的三尖瓣小叶,通常被束缚在
基础心肌,导致环的顶端位移和右心室的心房化。
该缺陷通常归因于瓣膜分层的失败 - emt后的关键形态发生步骤
原始瓣膜小叶与基础心肌分离的瓣膜发生。以前的
研究表明,瓣膜间质细胞(VIC)的分化动力学改变可能有助于
该瓣膜缺陷的发病机理。我建议定义瓣膜分层的分子调节剂
通过对Ebstein异常的多摩变解剖,利用Ebstein的异常鼠模型系统,
原代人组织和人类遗传学数据。在我的第一个目标中,我将使用时空单细胞RNA
测序和人类遗传学分析,以识别调节调节的房屋缓冲信号传导相互作用
瓣膜分层。在第二个目标中,我将使用集成的单细胞RNA/ATAC测序方法
定义驱动VIC脂肪测定的基因调节网络。我的主要赞助商Deepak Srivastava博士,
在发育性心脏生物学,人遗传学和干细胞生物学方面具有广泛的专业知识。我的共同
赞助商Chun(Jimmie)Ye博士拥有实验和计算单细胞基因组学专家。他们的
集体专业知识将假设我会收到必要的培训和心态来完成拟议的
研究。为了获得我项目所需的稀有组织样本,我组成了多中心协作
Ebstein的两个大容量的异常患者中心。此外,我还确保了人类的专业知识
遗传学和机器从博士的Jingjing Li博士学习,以支持我的人类遗传学成分
项目。同时,我正在小儿心胸外科手术中进行纵向临床诊所
伴随着我的临床培训共同赞助者,UCSF儿科心脏外科主任彼得·库雷塔斯(Peter Kouretas)博士
移植程序。总体而言,拟议的研究将阐明先前未表征的机制
晚期心室瓣膜形态发生,并为发展新颖的努力提供了努力
基于再生医学疗法的先天性和获得的瓣膜病。 F30 NRSA奖学金
支持将促进我在发育性心脏生物学和计算基因组学方面的专业知识,我进一步
朝着我成为学术儿科心胸外科医生科学家的最终职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEXANDER Flaherty MERRIMAN其他文献
ALEXANDER Flaherty MERRIMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEXANDER Flaherty MERRIMAN', 18)}}的其他基金
Defining the molecular regulators of valvular delamination via multi-omic dissection of Ebstein’s Anomaly
通过 Ebstein 异常的多组学解剖定义瓣膜分层的分子调节因子
- 批准号:
10441229 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Investigating the Role of Heterotrimeric G Proteins in Craniofacial Development and Auriculocondylar Syndrome
研究异三聚体 G 蛋白在颅面发育和耳髁综合征中的作用
- 批准号:
10573017 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Synthesis of the Multi-Modality High Resolution 3-D Atlas of Human Lung
人肺多模态高分辨率 3D 图谱的合成
- 批准号:
10530974 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Kidney single cell and spatial molecular atlas project - KIDSSMAP
肾脏单细胞和空间分子图谱项目 - KIDSSMAP
- 批准号:
10531101 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Comprehensive single-cell atlas of the developing mouse brain
发育中的小鼠大脑的综合单细胞图谱
- 批准号:
10686208 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别: