Catalyst- and Reagent-Guided Selective Alkyl C-H Bond Functionalization
催化剂和试剂引导的选择性烷基 C-H 键官能化
基本信息
- 批准号:10607409
- 负责人:
- 金额:$ 6.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2026-02-14
- 项目状态:未结题
- 来源:
- 关键词:AlcoholsAmidesBindingBinding SitesBoranesCarbonComplexDevelopmentDiseaseDockingElementsEvaluationExhibitsFamilyGoalsHydrogen BondingIntuitionIridiumLaboratoriesLeadLigand BindingLigandsMedicineMentorsMetabolismMethodsModificationOrganic SynthesisPositioning AttributePropertyReactionReagentResearchRouteScientistSiteSolubilityStructureTechnologyTestingTimeTransition ElementsWorkcatalystclinical candidatedesigndiboraneexperimental studyfunctional grouphuman diseaseimprovedinnovationlead optimizationmethod developmentpreferenceprogramsthree dimensional structure
项目摘要
PROJECT SUMMARY
Identifying just one new clinical candidate for the treatment of human disease usually requires the design,
synthesis, testing, and redesign of thousands upon thousands of organic compounds. Improvements to synthetic
technologies therefore have a major impact on the time required to identify clinical candidates by maximizing the
number of compounds that can be accessed from a single precursor. In particular, adjusting key properties such
as bioactivity, solubility, metabolism, and stability are best accomplished by methods that are capable of
preparing a wide variety of new compounds with a minimal number of steps. Late-stage functionalization of
carbon-hydrogen bonds offers medicinal chemists this coveted opportunity by facilitating the introduction of
numerous types of functional groups into a given lead structure. Recent efforts have demonstrated that transition-
metal catalysts can enable the diverse functionalization of strong alkyl C–H bonds within organic compounds via
the intermediacy of an organoboron compound. However, methods to achieve control over the site- and
stereoselectivity of alkyl C–H bond functionalization are limited by their strength and ubiquity in complex
molecules. The proposed research focuses on the development of a broadly applicable strategy to achieve
selectivity in the functionalization of C(sp3)–H bonds that is independent of inherent substrate preferences. The
impact of this work is to enable practitioners to make precise structural edits to bioactive compounds without
lengthy synthetic manipulation. The proposed approach converts a major challenge in complex molecule
functionalization, the presence of potentially intervening groups, into an opportunity to localize reactivity of a
transition metal catalyst to convert specific C–H bonds into C–B bonds. Specifically, the proposed research will
create catalysts and reagents that bind an existing polar functional group, such an alcohol or amide, thereby
guiding functionalization to an adjacent site. Synthetic routes are presented to access a suite of catalysts and
reagents. In conjunction with experiments to evaluate their suitably for guided functionalization, they will be
refined iteratively for application to target structures. Subsequent studies of the functionalization of complex,
biologically active compounds will demonstrate the applicability and generality of the proposed method to lead
optimization. To control stereoselectivity, a key consideration in alkyl C–H bond functionalization, chiral diborane
reagents derived from readily available precursors will be employed. By differentiating the energies of
diastereomeric intermediates and transition states en route to the alkylboronate products, new derivatives can
be accessed with well-defined three-dimensional structures. An integrated component of the proposed research
program are mechanistic experiments that will form the basis of informed improvements to the overall approach,
as defined by metrics that include reaction efficiency, site-selectivity, and stereo-selectivity. Achieving the
specific aims of the proposed research will expand the opportunities available to scientists to make precise edits
to complex organic compounds at alkyl C–H bonds, facilitating access to new bioactive compounds.
项目摘要
仅确定一个新的治疗人类疾病的临床候选者通常需要设计,
成千上万的有机化合物的合成,测试和重新设计。改进合成
因此,技术对确定临床候选者所需的时间有重大影响
可以从单个前体访问的化合物数量。特别是,调整关键属性这样
作为生物活性,可溶性,代谢和稳定性,最好通过能够的方法来完成
准备各种新化合物,并以最少的步骤数量。后期功能
碳 - 氢键通过促进引入的碳质化学家这个令人垂涎的机会
多种类型的官能团成到给定的铅结构中。最近的努力表明了过渡 -
金属催化剂可以通过有机化合物中强烷基C -H键的潜水功能化。
有机体化合物的中间体。但是,实现对站点和地点的控制的方法
烷基C – H键功能化的立体选择性受复合物中的强度和无处不在的限制
分子。拟议的研究重点是制定广泛适用的策略以实现
与继承底物偏好无关的C(SP3) - H键功能化的选择性。这
这项工作的影响是使从业人员能够精确的结构编辑,以便没有生物活性化合物
冗长的合成操作。提出的方法转化了复杂分子的重大挑战
功能化,潜在的干预组的存在,成为一个本地化反应性的机会
过渡金属催化剂将特定的C -H键转换为C – B键。具体而言,拟议的研究将
创建结合现有极性功能组(例如酒精或酰胺)的催化剂和试剂,从而
指导功能化到相邻站点。提出合成路线以获取一套催化剂和
试剂。结合实验以评估其适当的指导功能化,它们将是
迭代以迭代为目标结构。随后研究复合物的功能化,
生物活性化合物将证明所提出的方法的适用性和一般性
优化。为了控制立体选择性,烷基C -H键功能化的关键考虑因素
将采用源自可用的前体的试剂。通过区分
非对映异构体中间体和过渡状态在到达烷基硼酸酯产品的途中,新的衍生物可以
使用明确的三维结构访问。拟议研究的综合组成部分
程序是机械实验,将构成对整体方法的明智改进的基础,
由包括反应效率,位点选择性和立体定义的指标定义。实现
拟议研究的具体目标将扩大科学家可用的机会进行精确编辑
在烷基C – H键处进行复杂的有机化合物,以支持获得新的生物活性化合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyan Anthony D'Angelo其他文献
Kyan Anthony D'Angelo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
结合氧化凝胶纺丝法和多级交联策略连续纺高性能聚酰胺气凝胶纤维及其构性关系研究
- 批准号:52373030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
circRNA M1SPC结合YAP通过促进非经典谷氨酰胺代谢途径抑制胰腺癌对新型溶瘤病毒M1敏感性的作用与机制研究
- 批准号:82203599
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
circRNA M1SPC结合YAP通过促进非经典谷氨酰胺代谢途径抑制胰腺癌对新型溶瘤病毒M1敏感性的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
胶孢炭疽菌SDH与吡唑酰胺类杀菌剂结合的分子机理研究
- 批准号:32160654
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
谷氨酰胺合成酶结合EPC源性外泌体构建小口径人造血管用于病理状态下血管再生的研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 6.91万 - 项目类别:
Chemoselective Heterogeneous Catalysts for Oxidative Amide Coupling
用于氧化酰胺偶联的化学选择性多相催化剂
- 批准号:
10370346 - 财政年份:2020
- 资助金额:
$ 6.91万 - 项目类别:
Formation of C-C Bonds from Unactivated C(sp3)-H Bonds of Hydrosilanes Derived from Common Functional Groups
由常见官能团衍生的氢硅烷的未活化 C(sp3)-H 键形成 C-C 键
- 批准号:
10316163 - 财政年份:2020
- 资助金额:
$ 6.91万 - 项目类别:
New Chemical Process to Selectively Functionalize Pyridines, Diazines and Pharmaceuticals
选择性功能化吡啶、二嗪和药物的新化学工艺
- 批准号:
10733969 - 财政年份:2018
- 资助金额:
$ 6.91万 - 项目类别:
Enzyme-Based Platform Technology for Cancers Utilizing PAM: Etiology of Novel Ami
利用 PAM 治疗癌症的酶平台技术:新型 Ami 的病因学
- 批准号:
9004645 - 财政年份:2015
- 资助金额:
$ 6.91万 - 项目类别: