Regulation of neuroectoderm morphogenesis by Nodal signaling programs
Nodal 信号传导程序对神经外胚层形态发生的调节
基本信息
- 批准号:10606406
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AffectAnencephaly and spina bifida X linkedAnteriorAutomobile DrivingBehaviorBlastodermCandidate Disease GeneCell CommunicationCellsChildhoodComplexCongenital AbnormalityCoupledDataDevelopmentEmbryoEmbryonic DevelopmentEndodermEnsureEventFutureGenesGeneticGenetic TranscriptionGerm LayersIndividualIntercalated CellKnowledgeLigandsLiteratureMesodermModelingMorphogenesisNeural FoldNeural Tube ClosureNeural Tube DefectsNeural tubeNeuroectodermNodalOrganismPlayPregnancyPrevalenceProcessRegulationResearchRoleSeriesSeveritiesShapesSignal PathwaySignal TransductionSignaling MoleculeSpecific qualifier valueSpinal CordSpinal DysraphismSpontaneous abortionTechniquesTestingTimeTissuesTransgenic OrganismsVertebratesZebrafishblastomere structurebrain shapecell motilitychordinconstitutive active receptorembryo cellgastrulationgene functionin vivoin vivo Modelinnovationknock-downloss of functionmorphogensmortalitynoveloptogeneticsoverexpressionpolarized cellprogramsreceptorresponsetranscriptome sequencingvertebrate embryos
项目摘要
Summary
Embryonic development is a series of tightly regulated events that build a single cell into a complex organism. A
key milestone in early embryonic development is gastrulation, when the body plan is first shaped by the behaviors
of thousands of individual cells. However, how these cells communicate to ensure proper morphogenesis is not
completely understood. Mesoderm and neuroectoderm (NE, future neural tube) tissue morphogenesis is driven
by convergence and extension (C&E), when cells intercalate to simultaneously narrow and elongate the body
axis and bring the neural folds together to ensure proper neural tube closure. Disruptions in these highly
conserved cell movements can result in neural tube defects that affect many pregnancies worldwide. Nodal is a
well conserved signaling pathway that is active during gastrulation and most well-known for the role it plays in
mesoderm and endoderm specification in vertebrates. However, little is understood about the role of Nodal in
C&E morphogenesis independent of mesoderm formation, particularly in NE. By utilizing zebrafish ex vivo and
in vivo models, I will study the role of Nodal specifically in morphogenesis independent of its better-known
function during tissue specification. To examine the role of Nodal underlying NE morphogenesis, I can
independently analyze NE extension using ex vivo zebrafish blastoderm explants, naïve clusters of embryonic
cells that form all three germ layers and undergo C&E morphogenesis in response to exogenous Nodal signaling.
An early peak of Nodal signaling in explants promotes mesoderm extension and specification. However,
preliminary data from our lab demonstrated that a relatively delayed peak of Nodal signaling promotes NE-
specific C&E morphogenesis that is independent of its role in mesoderm specification. This suggests that the
temporal regulation of Nodal regulates NE-specific morphogenesis. Based on my promising preliminary data, I
hypothesize that Nodal signaling activates a novel, temporally regulated, NE-specific transcriptional program
that drives C&E morphogenesis independent of mesoderm specification. To test this hypothesis, I propose 3
aims: Aim 1 will investigate the role of temporal Nodal signaling dynamics in NE-specific morphogenesis using
optogenetic Nodal receptors to precisely manipulate signaling in embryonic explants. In Aim 2, I will restore
Nodal signaling specifically within the NE of Nodal-deficient zebrafish embryos using innovative transgenic lines
to determine whether Nodal can drive in vivo NE extension in the absence of mesoderm. Finally, in Aim 3 I will
perform over expression and knock-down of temporally regulated candidate genes to determine if they are
drivers of NE-specific extension both explants and in vivo. This proposal will define the foundational knowledge
on the primary role of Nodal in NE-specific morphogenesis, disruptions in which may contribute to neural tube
defect prevalence and severity.
概括
胚胎发育是一系列严格调控的事件,将单个细胞构建成复杂的生物体。
早期胚胎发育的关键里程碑是原肠胚形成,此时身体计划首先由行为形成
然而,这些细胞如何通讯以确保正确的形态发生却并不明确。
完全了解中胚层和神经外胚层(NE,未来的神经管)组织形态发生。
通过会聚和延伸 (C&E),当细胞插入时,身体会同时变窄和拉长
轴并将神经褶皱聚集在一起,以确保这些高度的神经管正确闭合。
保守的细胞运动可能导致神经管缺陷,影响全球许多怀孕。
保守的信号通路,在原肠胚形成过程中活跃,并且以其在
然而,对于 Nodal 在脊椎动物中的作用知之甚少。
C&E 形态发生独立于中胚层形成,特别是在 NE 中通过利用斑马鱼离体和
在体内模型中,我将研究 Nodal 在形态发生中的作用,独立于其更广为人知的
为了检查节点在 NE 形态发生过程中的作用,我可以
使用离体斑马鱼胚盘外植体、幼稚胚胎簇独立分析 NE 延伸
形成所有三个胚层并响应外源 Nodal 信号而经历 C&E 形态发生的细胞。
外植体中节点信号的早期峰值促进中胚层延伸和规范。
我们实验室的初步数据表明,相对延迟的 Nodal 信号峰值会促进 NE-
特定的 C&E 形态发生与其在中胚层规范中的作用无关。
节点的时间调节调节 NE 特异性形态发生 根据我有希望的初步数据,我。
研究表明,Nodal 信号传导激活一种新颖的、时间调节的、NE 特异性转录程序
为了检验这个假设,我提出了 3 个独立于中胚层规范的驱动 C&E 形态发生的因素。
目标:目标 1 将研究颞节点信号动力学在 NE 特异性形态发生中的作用
光遗传学节点受体精确操纵胚胎外植体中的信号传导 在目标 2 中,我将恢复。
使用创新转基因系在节点缺陷斑马鱼胚胎的 NE 内特异地进行节点信号传导
确定Nodal是否可以在没有中胚层的情况下驱动体内NE延伸最后,在目标3中我将。
对临时调节的候选基因进行过度表达和敲低以确定它们是否
外植体和体内 NE 特异性延伸的驱动因素 该提案将定义基础知识。
关于 Nodal 在 NE 特异性形态发生中的主要作用,其中的破坏可能有助于神经管
缺陷发生率和严重程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alyssa Nicole Emig其他文献
Alyssa Nicole Emig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Interdisciplinary approaches for understanding how arsenic and micronutrients affect the epigenome to influence spina bifida risk
了解砷和微量营养素如何影响表观基因组以影响脊柱裂风险的跨学科方法
- 批准号:
10560333 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
12th International Conference on Neural Tube Defects
第十二届国际神经管缺陷会议
- 批准号:
10469136 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Evaluating Human Pluripotent Stem Cell-Derived Neural Rosette Arrays as a Neural Tube Defect Risk Screening Platform
评估人类多能干细胞衍生的神经花环阵列作为神经管缺陷风险筛查平台
- 批准号:
10218408 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Evaluating Human Pluripotent Stem Cell-Derived Neural Rosette Arrays as a Neural Tube Defect Risk Screening Platform
评估人类多能干细胞衍生的神经花环阵列作为神经管缺陷风险筛查平台
- 批准号:
10369044 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Examining tissue-specific DNA methylation after prenatal exposure to arsenic among infants with spina bifida
脊柱裂婴儿产前暴露于砷后检查组织特异性 DNA 甲基化
- 批准号:
10217141 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别: