Synthetic morphogenesis to recapitulate multicellular airway branching patterns
合成形态发生来概括多细胞气道分支模式
基本信息
- 批准号:10606897
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnatomyArchitectureAreaBiochemicalBiologicalBiological ModelsCell CommunicationCell ProliferationCell modelCellsCellular MorphologyCellular StructuresClinical TreatmentCoculture TechniquesCommunicationComplexComprehensionComputer ModelsCoupledCuesDevelopmentDevelopmental BiologyDevicesDiffuse PatternDiffusionDistalEmbryoEngineeringEnvironmentEpitheliumExperimental DesignsExperimental ModelsFeedbackFractalsFunctional RegenerationGene ExpressionGenerationsGoalsHigher Order Chromatin StructureHumanIn SituInvestigationKidneyKnowledgeLightLungLung diseasesMammary glandMapsMathematicsMeasuresMesenchymalMesenchymeMicrofluidicsMicroscopyModelingMorphogenesisMorphologyMusNatureOutcomePancreasParacrine CommunicationPathway interactionsPatternPhysiologicalPopulationPositioning AttributeProcessProgram DevelopmentReactionRegenerative MedicineReporterRepressionResolutionReverse engineeringSchemeSignal PathwaySignal RepressionSignal TransductionStereotypingStructureStructure of parenchyma of lungSynthetic GenesTestingTherapeuticTissue EngineeringTissuesTrainingTreesWorkbiliary tractcell typecellular imagingdesignexperienceexperimental studyin vitro Modelinducible gene expressioninsightintercellular communicationinterestknockout genelung developmentlung regenerationmigrationmorphogensnetwork architecturenoveloptogeneticsprogenitorprogramsreceptorregenerativeregenerative therapyresponseself assemblysmall moleculespatiotemporalstem cellssynthetic biologysynthetic constructtool
项目摘要
Abstract
The bronchial network of the human lung is a tree-like structure comprising over 20 generations of dichotomous
branching; yet, the signaling basis for how this elaborate network is patterned has remained an enduring mystery.
This represents not only a fundamental knowledge gap in developmental biology, but also a limiting factor
for developing regenerative therapies to counter lung disease. While there are several plausible hypotheses as
to how this patterning mechanism could operate, testing them has proven beyond the limits of classical gene knock-
out experiments and other traditional reverse engineering approaches due to the complex signaling crosstalk found in
situ. In this proposal, I will unify a classic experimental model in lung development (mesenchyme-free culture
of distal lung epithelium) with state-of-the-art synthetic cell-cell signaling tools in order to map the design
space for branch-patterning mechanisms. Working in a state-of-the-art Biological Design Center with a team of
experts in mammalian synthetic biology and lung development, I will employ a “build-to-understand” approach wherein
I construct synthetic cell populations that can either communicate with ex vivo tissues using endogenous signaling
networks, or communicate with other synthetic cells using signaling pathways orthogonal to any found in nature. I
will use these engineered cells to recapitulate an activation/repression feedback cycle which is thought to be vital in
lung branching morphogenesis. By manipulating cell-cell communication, I will be able to isolate the fundamental
design principles that govern how activation and repression signals between cells can manifest in higher-
order structures. Furthermore, by decoupling specific signaling axes from their larger developmental context, and by
performing high-resolution, time-lapse imaging of cell fate, I will be uniquely positioned to interrogate tissue pattern-
ing mechanisms with unprecedented control. I hypothesize that reciprocal activation and repression between
two cell types can give rise to a broad range of multicellular patterning outcomes depending on additional
feedback loops and initial conditions. To test this hypothesis, I will explore the how the morphology and topol-
ogy of multicellular patterns can be tuned by manipulating the signaling interactions between them. My overarching
hypothesis is based on the predictions of previous computational models of branching morphogenesis via reaction-
diffusion patterning, so I will use those predictions, and this theoretical framework, to guide my experimental designs.
To assess whether synthetic signaling by engineered cells could also be a tractable approach for generating regen-
erative lung tissue, I will further interrogate a 3D in vitro model where cell-cell signaling occurs exclusively through
synthetic morphogens and receptors. Taken together, these studies will provide fundamental insights into how
complex anatomical structures can be encoded in relatively simple signaling schemes which are executed
locally between cells. Analysis of the resulting branch patterns is also expected to inspire a new paradigm for har-
nessing synthetic cell-cell signaling to guide and direct the morphogenesis of therapeutically relevant cell types into
tissue-specific architectures for regenerative medicine.
抽象的
人肺的支气管网络是一种类似树状的结构,完成了20代二分法
分枝;然而,该精心制作网络的图案如何保持信号基础仍然是一个持久的谜团。
这不仅代表了发育生物学的基本知识差距,而且代表了一个限制因素
用于开发再生疗法以对抗肺部疾病。虽然有几种合理的假设
对于这种模式机制如何运作,对它们进行测试已被证明超出了经典基因敲除的限制。
由于在
原位。在此提案中,我将统一肺发育中的经典实验模型(无间隙培养
带有最先进的合成细胞 - 细胞信号传导工具的远端肺上皮)以绘制设计
分支机构机制的空间。在一个最先进的生物设计中心工作
哺乳动物合成生物学和肺发展专家,我将采用一种“建立理解”方法
我构建了可以使用内源信号传导与离体组织进行通信的合成细胞群
网络,或使用与自然中发现的任何信号通路正交的信号通路与其他合成细胞进行通信。我
将使用这些工程细胞来概括激活/抑制反馈周期,这在
肺分支形态发生。通过操纵细胞电池通信,我将能够隔离基本
设计原理,这些原理如何在较高的
订单结构。此外,通过将特定的信号轴从其较大的发育环境中分离出来,并通过
对细胞命运进行高分辨率,延时成像,我将被唯一地审问组织模式 -
具有前所未有的控制的机制。我假设这种相互激活和表达
两种细胞类型会导致广泛的多细胞图案结果,具体取决于附加
反馈循环和初始条件。为了检验这一假设,我将探讨形态和topology和topol-
可以通过操纵它们之间的信号传导相互作用来调整多细胞图案的OGY。我的总体
假设是基于通过反应的先前计算模型的预测
扩散图案,因此我将使用这些预测以及这个理论框架来指导我的实验设计。
评估工程细胞的合成信号是否也可能是产生再生的一种可进行的方法
erration的肺组织,我将进一步询问一个3D体外模型,其中细胞 - 细胞信号仅通过
合成形态和接收器。综上所述,这些研究将提供有关如何
复杂的解剖结构可以用相对简单的信号方案进行编码
在细胞之间局部。还有望分析由此产生的分支模式,以激发新的范式
嵌套合成细胞 - 细胞信号传导,指导和将热相关细胞类型的形态发生到
用于再生医学的组织特异性体系结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian S Kinstlinger其他文献
Ian S Kinstlinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian S Kinstlinger', 18)}}的其他基金
Computational and experimental modeling of cell function in response to 3D oxygen transport in vitro.
细胞功能响应体外 3D 氧运输的计算和实验模型。
- 批准号:
9895842 - 财政年份:2018
- 资助金额:
$ 6.95万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Deciphering the Glycan Code in Human Alzheimer's Disease Brain
破译人类阿尔茨海默病大脑中的聚糖代码
- 批准号:
10704673 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Development of engineered fasciocutaneous skin flaps
工程筋膜皮瓣的开发
- 批准号:
10715063 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: