Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
基本信息
- 批准号:10607487
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-25 至 2025-08-24
- 项目状态:未结题
- 来源:
- 关键词:AccelerationBenchmarkingBiochemicalBiological ModelsBiologyBiophysicsComputational TechniqueComputer ModelsComputer SimulationComputing MethodologiesCrystallographyDataDevelopmentDiseaseEventFunctional disorderGenerationsGeneticGoalsHealthHybridsIndividualInvestigationMethodologyMethodsModelingMolecular ConformationMolecular StructurePathway interactionsProcessProtein DynamicsProteinsReactionResearchResearch PersonnelRoleSamplingStructureSwarm intelligenceTechniquesTimeUniversitiesValidationWeightWorkX-Ray Crystallographycomputer studiescostdesignelectron densityempowermentenzyme mechanismexperimental studyfallsfollow-uphigh dimensionalityimprovedinsightmolecular dynamicsmolecular mechanicsnovelparticlepredictive modelingprotein complexprotein functionquantumsimulationsynergismtool
项目摘要
PROJECT SUMMARY
Diseases are frequently caused by dysfunction of proteins in the body, perhaps
due to maladapted genetics or from a wide variety of other causes. Researchers can gain
a glimpse into this function through the study of a protein’s mechanism and dynamics.
Ideally, a complete understanding of the role of a protein in biophysical interactions would
describe the entire mechanistic pathway on an atomistic and dynamic level. However,
this cannot be attained with experimental studies alone with today’s capabilities.
Computational studies can provide experimentally inaccessible quantitative and atomistic
information so they serve as powerful tools for better understanding diseases and
identifying targets for experimental follow-up and potential treatment, but they carry little
weight without rigorous experimental validation. We seek to reconcile experimental and
computational data, equipping researchers with a method to produce the aforementioned
continuous and atomistic information on protein dynamics so that they can elucidate the
long timescale dynamics of proteins on an atomic level. When deconvolving time-resolved
crystallographic data, I will substitute the typical static crystallographic initial inputs with
structures from molecular dynamics simulations and predictive models to improve the
continuity and accuracy of deconvoluted data. The objective of this work is to produce the
aforementioned ideal dynamics information for a significant portion of the mechanism of
PmHMGR as a demonstration and refinement of the proposed Markov State informed
Multilinear Singular Value Decomposition (MSiMSVD) method which reconciles
experimental and computational data. Application of the MSiMSVD method to slow
dynamical events, such as the PmHMGR 2nd hydride transfer, is limited by the ability of
molecular dynamics to perform accurate long-timescale simulations. This often requires
Transition State Force Fields (TSFFs), but their parameterization for biomolecules often
falls into local optimization minima due to high dimensionality. To reduce local minima
trapping and make TSFF generation more accessible for biophysical research, I will apply
constraints and swarm intelligence techniques to improve current TSFF parameterization.
Collectively, these aims will provide a means by which experimental and
computational techniques can work synergistically to produce the continuous atomistic
protein dynamics information ideal for the investigation of proteins and their related
functions and diseases.
项目概要
疾病常常是由体内蛋白质功能障碍引起的,也许
由于基因适应不良或各种其他原因,研究人员可能会获益。
通过研究蛋白质的机制和动力学来了解这一功能。
理想情况下,全面了解蛋白质在生物物理相互作用中的作用将
在原子和动态层面上描述整个机制路径。
以今天的能力,仅靠实验研究是无法实现这一目标的。
计算研究可以提供实验上无法获得的定量和原子性
信息,因此它们可以成为更好地了解疾病和
确定实验后续和潜在治疗的目标,但它们几乎没有什么意义
我们寻求协调实验和未经严格实验验证的重量。
计算数据,为研究人员提供一种进行讨论的方法
有关蛋白质动力学的连续和原子信息,以便他们能够阐明
当解卷积时间分辨时蛋白质的长时标动力学。
晶体学数据,我将用典型的静态晶体学初始输入代替
分子动力学模拟和预测模型的结构,以改进
这项工作的目标是产生解卷积数据的连续性和准确性。
机制的重要部分的理想动力学信息
PmHMGR 作为建议的马尔可夫状态的演示和改进
协调的多线性奇异值分解 (MSiMSVD) 方法
实验和计算数据的MSiMSVD方法的应用。
动力学事件,例如 PmHMGR 第二次氢化物转移,受到以下能力的限制
分子动力学来执行精确的长时间尺度模拟。
过渡态力场 (TSFF),但它们对生物分子的参数化通常
由于高维而陷入局部优化最小值,以减少局部最小值。
捕获并使 TSFF 生成更容易用于生物物理研究,我将申请
约束和群体智能技术来改进当前 TSFF 参数化。
总的来说,这些目标将提供一种手段,通过这些手段进行实验和
计算技术可以协同工作以产生连续的原子论
蛋白质动力学信息是蛋白质及其相关研究的理想选择
功能和疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikaela Farrugia其他文献
Mikaela Farrugia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
区域性农业干旱、强风、低温气象指数保险产品设计与应用研究
- 批准号:71173139
- 批准年份:2011
- 资助金额:43.0 万元
- 项目类别:面上项目
基于标杆管理的县级疾病预防控制机构绩效诊断与改进的关键技术研究
- 批准号:71003025
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
宏观分层虚拟标杆管理理论与方法创新研究
- 批准号:70963003
- 批准年份:2009
- 资助金额:21.0 万元
- 项目类别:地区科学基金项目
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
- 批准号:
10730788 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
A quick, and robust, and unbiased platform for circular RNAs isolation, discovery and profiling.
一个快速、强大且公正的循环 RNA 分离、发现和分析平台。
- 批准号:
10761203 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Hierarchically-Structured Conduits with Programmed Release of Neurotrophic Factors for Repairing Large Defects in Thick Nerves
具有程序化释放神经营养因子的分层结构导管用于修复粗神经的大缺损
- 批准号:
10579569 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
ECOD: Large scale classification of predicted and experimental protein structures
ECOD:预测和实验蛋白质结构的大规模分类
- 批准号:
10659763 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: