Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
基本信息
- 批准号:10607487
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-25 至 2025-08-24
- 项目状态:未结题
- 来源:
- 关键词:AccelerationBenchmarkingBiochemicalBiological ModelsBiologyBiophysicsComputational TechniqueComputer ModelsComputer SimulationComputing MethodologiesCrystallographyDataDevelopmentDiseaseEventFunctional disorderGenerationsGeneticGoalsHealthHybridsIndividualInvestigationMethodologyMethodsModelingMolecular ConformationMolecular StructurePathway interactionsProcessProtein DynamicsProteinsReactionResearchResearch PersonnelRoleSamplingStructureSwarm intelligenceTechniquesTimeUniversitiesValidationWeightWorkX-Ray Crystallographycomputer studiescostdesignelectron densityempowermentenzyme mechanismexperimental studyfallsfollow-uphigh dimensionalityimprovedinsightmolecular dynamicsmolecular mechanicsnovelparticlepredictive modelingprotein complexprotein functionquantumsimulationsynergismtool
项目摘要
PROJECT SUMMARY
Diseases are frequently caused by dysfunction of proteins in the body, perhaps
due to maladapted genetics or from a wide variety of other causes. Researchers can gain
a glimpse into this function through the study of a protein’s mechanism and dynamics.
Ideally, a complete understanding of the role of a protein in biophysical interactions would
describe the entire mechanistic pathway on an atomistic and dynamic level. However,
this cannot be attained with experimental studies alone with today’s capabilities.
Computational studies can provide experimentally inaccessible quantitative and atomistic
information so they serve as powerful tools for better understanding diseases and
identifying targets for experimental follow-up and potential treatment, but they carry little
weight without rigorous experimental validation. We seek to reconcile experimental and
computational data, equipping researchers with a method to produce the aforementioned
continuous and atomistic information on protein dynamics so that they can elucidate the
long timescale dynamics of proteins on an atomic level. When deconvolving time-resolved
crystallographic data, I will substitute the typical static crystallographic initial inputs with
structures from molecular dynamics simulations and predictive models to improve the
continuity and accuracy of deconvoluted data. The objective of this work is to produce the
aforementioned ideal dynamics information for a significant portion of the mechanism of
PmHMGR as a demonstration and refinement of the proposed Markov State informed
Multilinear Singular Value Decomposition (MSiMSVD) method which reconciles
experimental and computational data. Application of the MSiMSVD method to slow
dynamical events, such as the PmHMGR 2nd hydride transfer, is limited by the ability of
molecular dynamics to perform accurate long-timescale simulations. This often requires
Transition State Force Fields (TSFFs), but their parameterization for biomolecules often
falls into local optimization minima due to high dimensionality. To reduce local minima
trapping and make TSFF generation more accessible for biophysical research, I will apply
constraints and swarm intelligence techniques to improve current TSFF parameterization.
Collectively, these aims will provide a means by which experimental and
computational techniques can work synergistically to produce the continuous atomistic
protein dynamics information ideal for the investigation of proteins and their related
functions and diseases.
项目摘要
疾病通常是由体内蛋白质功能障碍引起的,也许
由于遗传学不良或来自多种其他原因。研究人员可以获得
通过研究蛋白质的机制和动力学来瞥见该功能。
理想情况下,完全了解蛋白质在生物物理相互作用中的作用将
在原子和动态水平上描述整个机械途径。然而,
这不能仅与当今能力相关的实验研究。
计算研究可以提供实验上无法访问的定量和原子
信息因此,它们是更好地理解疾病的强大工具,
确定实验随访和潜在治疗的目标,但它们的含量很少
我们试图调和实验性和
计算数据,为研究人员提供了一种产生理由的方法
关于蛋白质动力学的连续和原子信息,以便它们可以阐明
原子水平上蛋白质的长时间动力学。当撤离时间分辨时
晶体学数据,我将用典型的静态晶体学初始输入代替
分子动力学模拟和预测模型的结构,以改善
反价态数据的连续性和准确性。这项工作的目的是生产
关于很大一部分机制的理想动态信息
PMHMGR作为拟议的马尔可夫州的演示和完善
多线性奇异值分解(MSIMSVD)方法
实验和计算数据。将MSIMSVD方法应用于速度
动态事件,例如PMHMGR第二氢化物转移,受到受到的能力的限制
分子动力学进行准确的长时间模拟。这通常需要
过渡状态力场(TSFF),但其生物分子的参数经常
由于高维度,因此属于局部优化最小值。减少当地的最小值
捕获并使TSFF生成更容易进行生物物理研究,我将申请
约束和群智能技术,以改善当前的TSFF参数化。
总的来说,这些目标将提供一种实验和实验的手段
计算技术可以协同起作用以产生连续的原子
蛋白质动力学信息是研究蛋白质及其相关的理想
功能和疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikaela Farrugia其他文献
Mikaela Farrugia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
类脑计算系统基准测试研究
- 批准号:
- 批准年份:2022
- 资助金额:190 万元
- 项目类别:国际(地区)合作与交流项目
类脑计算系统基准测试研究
- 批准号:62250006
- 批准年份:2022
- 资助金额:190.00 万元
- 项目类别:国际(地区)合作与交流项目
高性能计算程序的基准测试程序自动生成方法
- 批准号:62202441
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
高性能计算程序的基准测试程序自动生成方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于工作负载表征的类脑体系结构基准测试模型与自动映射方法研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Structurally engineered furan fatty acids for the treatment of dyslipidemia and cardiovascular disease
结构工程呋喃脂肪酸用于治疗血脂异常和心血管疾病
- 批准号:
10603408 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Enhancing Drug Discovery Research by Free Energy Modeling
通过自由能建模加强药物发现研究
- 批准号:
10730788 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
A quick, and robust, and unbiased platform for circular RNAs isolation, discovery and profiling.
一个快速、强大且公正的循环 RNA 分离、发现和分析平台。
- 批准号:
10761203 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Hierarchically-Structured Conduits with Programmed Release of Neurotrophic Factors for Repairing Large Defects in Thick Nerves
具有程序化释放神经营养因子的分层结构导管用于修复粗神经的大缺损
- 批准号:
10579569 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
ECOD: Large scale classification of predicted and experimental protein structures
ECOD:预测和实验蛋白质结构的大规模分类
- 批准号:
10659763 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: