Molecular control of chondrocyte hypertrophy: an evolutionary approach
软骨细胞肥大的分子控制:一种进化方法
基本信息
- 批准号:10606678
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdultAgeBiologicalBiological ModelsCRISPR/Cas technologyCartilageCartilage injuryCell TherapyCellsChondrichthyesChondrocytesCollagen FiberCollagen Type ICollagen Type IIDegenerative polyarthritisDevelopmentElderlyEmbryonic DevelopmentEngineeringEnhancersEvolutionFibrocartilagesFishesFrequenciesFrictionGene ExpressionGene Transfer TechniquesGenesGenetic TranscriptionGenomic approachGenomicsGrowthHealthHumanHyaline CartilageHypertrophyImplantIn VitroIndividualInferiorInjuryJointsKneeLaboratoriesLeftLesionLifeMammalsMechanicsMesenchymalMesenchymal Stem CellsMinorMolecularNatureOrganismOverweightPainPathologyPatientsPhenotypePhysiologic OssificationPopulationPrevalenceProcessPropertyQuality of lifeRegulator GenesResearchResourcesSharkSiteSkeletal DevelopmentSkeletonStable PopulationsStructureTechniquesTestingThinnessTimeTissue EngineeringTissuesTransplantationUntranslated RNAVariantVertebratesWeight-Bearing statearticular cartilagebonebone losscalcificationcartilage cellcartilage developmentcartilaginouscomparative genomicsdifferential expressionembryo tissuegene discoverygenome annotationgenome editinghealingimplantationimprovedin vitro Modelinduced pluripotent stem cellmarinenovelnovel strategiesosteogenicrepairedsingle-cell RNA sequencingskeletalskeletogenesisstem cell based approachstem cellstreatment strategy
项目摘要
Project Summary
In mammals, cartilage is predominantly an embryonic tissue: the vast majority of cartilage is replaced by bone
during the processes of hypertrophy and ossification, with cartilage persisting in relatively few places within the
adult skeleton (e.g. in joints, as articular cartilage). Articular cartilage is an aneural, avascular tissue with very
limited capacity for spontaneous repair, hence the prevalence in humans of cartilage pathologies like
osteoarthritis. In contrast, cartilaginous fishes (sharks, skates, and rays) have undergone an evolutionary loss
of bone, instead possessing a skeleton that is composed entirely of pre-hypertrophic cartilage, and that
remains cartilaginous throughout life. Understanding how cartilaginous fishes arrest skeletal development prior
to chondrocyte hypertrophy will shed new light on transcriptional features that could be employed for in vitro
engineering of stable chondrocytes for the treatment of human cartilage injuries.
Stem cell-based approaches for the treatment of articular cartilage injuries are currently hindered by the
relative instability of mammalian cartilage cells (chondrocytes) in vitro and upon implantation into an injury site.
In this project, the molecular development of cartilage in the little skate (Leucoraja erinacea) will be studied to
discover gene expression correlates of their permanent cartilaginous skeleton. This project will begin with the
use of single-cell RNA-sequencing to identify genes that are differentially expressed between
developing and differentiated skate and mammalian chondrocytes (Aim 1), and that may underlie arrest
prior to hypertrophy in the former. ATAC-seq and comparative genomic approaches will then be used to
test for variation in non-coding regions (i.e. putative enhancers) that might account for divergent gene
expression during skate and mammalian skeletogeneis (Aim 2). Finally, skate-inspired molecular
manipulations (CRISPR/Cas9 genome editing and/or transgenesis) will be incorporated in an in vitro
model of mammalian skeletogenesis, in order to achieve a permanent and stable chondrocyte cell state
from mammalian mesenchymal progenitors (Aim 3).
This project will capitalize on the unique properties of the skate skeleton, and on the biological resources,
facilities, and expertise that are available at the Marine Biological Laboratory in Woods Hole. By taking an
evolution-inspired tissue engineering approach, this project will contribute to the development of novel in vitro
techniques for cartilage engineering and for the treatment of mammalian skeletal pathologies.
项目摘要
在哺乳动物中,软骨主要是胚胎组织:绝大多数软骨被骨骼取代
在肥大和骨化过程中,软骨持续在相对较少的地方
成人骨骼(例如关节,作为关节软骨)。关节软骨是一种胸腔,无血管组织
自发修复的能力有限,因此软骨病理的人类流行率
骨关节炎。相反,软骨鱼(鲨鱼,溜冰和射线)经历了进化损失
骨头,而是拥有完全由腹部前软骨组成的骨骼,并且
一生仍然是软骨。了解软骨鱼如何阻止骨骼发育
到软骨细胞肥大将为体外使用的转录特征提供新的启示
稳定软骨细胞的工程治疗人体软骨损伤。
目前,基于干细胞的基于干细胞的关节软骨损伤方法受到
哺乳动物软骨细胞(软骨细胞)的相对不稳定在体外和植入损伤部位后。
在这个项目中,将研究小滑板(Leucoraja erinacea)中软骨的分子发育
发现其永久性软骨骨骼的基因表达相关。这个项目将以
使用单细胞RNA测序来识别在之间差异表达的基因
开发和区分滑板和哺乳动物软骨细胞(AIM 1),这可能是逮捕的基础
在前者肥大之前。然后,ATAC-SEQ和比较基因组方法将用于
测试可能解释基因不同的非编码区域(即推定增强子)的变化
滑板和哺乳动物骨架期间的表达(AIM 2)。最后,滑板启发的分子
操纵(CRISPR/CAS9基因组编辑和/或转基因)将纳入体外
哺乳动物骨骼生成的模型,以实现永久稳定的软骨细胞状态
来自哺乳动物间充质祖细胞(AIM 3)。
该项目将利用滑板骨骼的独特特性,以及生物资源,
设施和专业知识可在伍兹孔的海洋生物实验室提供。通过
该项目以进化为灵感的组织工程方法,有助于新的体外发展
软骨工程技术和治疗哺乳动物骨骼病理的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Palmer其他文献
Michael Palmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
At the right time and place – identifying epigenetic and molecular determinants of a developmental learning window
在正确的时间和地点 – 识别发育学习窗口的表观遗传和分子决定因素
- 批准号:
10575177 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Endogenous retrovirus in joint aging and osteoarthritis development
内源性逆转录病毒在关节衰老和骨关节炎发展中的作用
- 批准号:
10719364 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: