Molecular control of chondrocyte hypertrophy: an evolutionary approach
软骨细胞肥大的分子控制:一种进化方法
基本信息
- 批准号:10606678
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdultAgeBiologicalBiological ModelsCRISPR/Cas technologyCartilageCartilage injuryCell TherapyCellsChondrichthyesChondrocytesCollagen FiberCollagen Type ICollagen Type IIDegenerative polyarthritisDevelopmentElderlyEmbryonic DevelopmentEngineeringEnhancersEvolutionFibrocartilagesFishesFrequenciesFrictionGene ExpressionGene Transfer TechniquesGenesGenetic TranscriptionGenomic approachGenomicsGrowthHealthHumanHyaline CartilageHypertrophyImplantIn VitroIndividualInferiorInjuryJointsKneeLaboratoriesLeftLesionLifeMammalsMechanicsMesenchymalMesenchymal Stem CellsMinorMolecularNatureOrganismOverweightPainPathologyPatientsPhenotypePhysiologic OssificationPopulationPrevalenceProcessPropertyQuality of lifeRegulator GenesResearchResourcesSharkSiteSkeletal DevelopmentSkeletonStable PopulationsStructureTechniquesTestingThinnessTimeTissue EngineeringTissuesTransplantationUntranslated RNAVariantVertebratesWeight-Bearing statearticular cartilagebonebone losscalcificationcartilage cellcartilage developmentcartilaginouscomparative genomicsdifferential expressionembryo tissuegene discoverygenome annotationgenome editinghealingimplantationimprovedin vitro Modelinduced pluripotent stem cellmarinenovelnovel strategiesosteogenicrepairedsingle-cell RNA sequencingskeletalskeletogenesisstem cell based approachstem cellstreatment strategy
项目摘要
Project Summary
In mammals, cartilage is predominantly an embryonic tissue: the vast majority of cartilage is replaced by bone
during the processes of hypertrophy and ossification, with cartilage persisting in relatively few places within the
adult skeleton (e.g. in joints, as articular cartilage). Articular cartilage is an aneural, avascular tissue with very
limited capacity for spontaneous repair, hence the prevalence in humans of cartilage pathologies like
osteoarthritis. In contrast, cartilaginous fishes (sharks, skates, and rays) have undergone an evolutionary loss
of bone, instead possessing a skeleton that is composed entirely of pre-hypertrophic cartilage, and that
remains cartilaginous throughout life. Understanding how cartilaginous fishes arrest skeletal development prior
to chondrocyte hypertrophy will shed new light on transcriptional features that could be employed for in vitro
engineering of stable chondrocytes for the treatment of human cartilage injuries.
Stem cell-based approaches for the treatment of articular cartilage injuries are currently hindered by the
relative instability of mammalian cartilage cells (chondrocytes) in vitro and upon implantation into an injury site.
In this project, the molecular development of cartilage in the little skate (Leucoraja erinacea) will be studied to
discover gene expression correlates of their permanent cartilaginous skeleton. This project will begin with the
use of single-cell RNA-sequencing to identify genes that are differentially expressed between
developing and differentiated skate and mammalian chondrocytes (Aim 1), and that may underlie arrest
prior to hypertrophy in the former. ATAC-seq and comparative genomic approaches will then be used to
test for variation in non-coding regions (i.e. putative enhancers) that might account for divergent gene
expression during skate and mammalian skeletogeneis (Aim 2). Finally, skate-inspired molecular
manipulations (CRISPR/Cas9 genome editing and/or transgenesis) will be incorporated in an in vitro
model of mammalian skeletogenesis, in order to achieve a permanent and stable chondrocyte cell state
from mammalian mesenchymal progenitors (Aim 3).
This project will capitalize on the unique properties of the skate skeleton, and on the biological resources,
facilities, and expertise that are available at the Marine Biological Laboratory in Woods Hole. By taking an
evolution-inspired tissue engineering approach, this project will contribute to the development of novel in vitro
techniques for cartilage engineering and for the treatment of mammalian skeletal pathologies.
项目概要
在哺乳动物中,软骨主要是胚胎组织:绝大多数软骨被骨所取代
在肥大和骨化过程中,软骨在软骨内相对较少的地方持续存在
成人骨骼(例如在关节中,作为关节软骨)。关节软骨是一种无神经、无血管的组织,具有非常丰富的功能。
自发修复能力有限,因此人类中普遍存在软骨病变,例如
骨关节炎。相比之下,软骨鱼类(鲨鱼、鳐鱼和鳐鱼)经历了进化的丧失
骨骼,而不是拥有完全由肥大前软骨组成的骨骼,并且
终生保持软骨状态。了解软骨鱼类如何阻止骨骼发育
软骨细胞肥大将为研究可用于体外的转录特征提供新的线索
用于治疗人类软骨损伤的稳定软骨细胞工程。
基于干细胞的治疗关节软骨损伤的方法目前受到以下因素的阻碍:
哺乳动物软骨细胞(软骨细胞)在体外和植入损伤部位后的相对不稳定性。
在这个项目中,将研究小鳐鱼 (Leucoraja erinacea) 软骨的分子发育,以
发现与永久软骨骨骼相关的基因表达。该项目将从
使用单细胞RNA测序来鉴定差异表达的基因
发育和分化的鳐鱼和哺乳动物软骨细胞(目标 1),这可能是被捕的原因
肥厚之前在前。然后将使用 ATAC-seq 和比较基因组方法
测试非编码区(即推定的增强子)中可能导致不同基因的变异
鳐鱼和哺乳动物骨骼发育过程中的表达(目标 2)。最后,受滑板启发的分子
操作(CRISPR/Cas9 基因组编辑和/或转基因)将被纳入体外
哺乳动物骨骼发生模型,以实现永久稳定的软骨细胞状态
来自哺乳动物间充质祖细胞(目标 3)。
该项目将利用溜冰鞋骨架的独特特性和生物资源,
伍兹霍尔海洋生物实验室提供的设施和专业知识。通过采取
受进化启发的组织工程方法,该项目将有助于开发新型体外
软骨工程和哺乳动物骨骼病理治疗的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Palmer其他文献
Michael Palmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Endogenous retrovirus in joint aging and osteoarthritis development
内源性逆转录病毒在关节衰老和骨关节炎发展中的作用
- 批准号:
10719364 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
At the right time and place – identifying epigenetic and molecular determinants of a developmental learning window
在正确的时间和地点 – 识别发育学习窗口的表观遗传和分子决定因素
- 批准号:
10575177 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Microglial Activation and Inflammatory Endophenotypes Underlying Sex Differences of Alzheimer’s Disease
阿尔茨海默病性别差异背后的小胶质细胞激活和炎症内表型
- 批准号:
10755779 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别: