Remmie.ai: a deep learning diagnostic assistance engine for ear-nose-throat diseases
Remmie.ai:耳鼻喉疾病深度学习诊断辅助引擎
基本信息
- 批准号:10602813
- 负责人:
- 金额:$ 34.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcademyAcuteAddressAdultAgeAge YearsAlgorithmsAmericanAntibiotic TherapyAntibioticsArchitectureArtificial Intelligence platformBlindedCaregiversCaringCertificationChildChild SupportChildhoodClassificationClinicClinic VisitsClinicalCollaborationsComputer softwareCountryCoupledCustomDataData SetDatabasesDevelopmentDevicesDiagnosisDiagnosticDiseaseDrainage procedureEarEaracheEarly DiagnosisEconomic BurdenEnsureFamilyFeedbackFeverFutureHealth Care CostsHealth Insurance Portability and Accountability ActHealthcareHealthcare SystemsHomeImageIncomeInfectionInstitutional Review BoardsLabelLibrariesLiquid substanceMachine LearningMalleusMedicineModelingMonitorNoseOtitis MediaOtolaryngologistOtolaryngologyOtoscopesOutcomePatient imagingPatient observationPatientsPediatric HospitalsPediatricsPersonsPharmaceutical PreparationsPharyngeal structurePhasePhysiciansPositioning AttributeProcessProtocols documentationProviderRecommendationRecurrenceResource-limited settingResourcesSecureSpecialistStructureSupervisionSurveysSymptomsSystemTechnologyTelemedicineTestingTextTimeTissuesTrainingTubeTympanic membraneTympanostomy Tube InsertionsValidationVisitVisualWorkaccurate diagnosisage groupartificial intelligence algorithmburden of illnesscare burdencare providersclinical diagnosisclinical diagnosticsclinical efficacyconvolutional neural networkcostdeep learningdisabilityear infectionefficacy studyexperienceexperimental studyhearing impairmentimprovedinfection managementmachine learning algorithmmiddle earmobile applicationneural network algorithmnovelpediatricianportabilitypreventrecurrent infectionresearch and developmentresponsesuccesssymptom managementtechnological innovationtelehealthtooltransfer learningusabilityuser-friendlyventilationvirtual visit
项目摘要
PROJECT SUMMARY
Otitis media (OM) is experienced by five out of six children before their third birthday, and 30-40% suffer
recurring infections, leading to 16 million annual episodes in the US. Ear infections are the primary reason for
antibiotic prescription for children under 6 years, are the second most common cause of hearing loss, and can
lead to lifelong sequelae. Diagnosis depends upon in-person clinic visits and visual examination by care
providers, at great inconvenience to patients and caregivers and at significant cost to the healthcare system,
estimated at $4 billion per year. Although the majority of OM cases resolve within a week and symptoms may
be managed by over-the-counter medications,10-20% do not, requiring additional antibiotic treatment or, in
extreme cases, tympanostomy tube insertion to provide ventilation to the middle ear and aid in fluid drainage.
Another compounding factor is limited access to otolaryngologists for accurate diagnosis and infection
management. The expansion of telehealth has the potential to address this need with rapid, convenient, and
affordable, but to date, there are no platforms to support and facilitate effective virtual visits for OM diagnosis.
The first Specific Aim of this Phase I proposal involves building a comprehensive database of several thousand
images of eardrums from patients with or without acute OM, with associated clinical diagnostic labels to, in
Specific Aim 2, train a novel custom machine learning algorithm, Remmie.ai. A convolutional neural network
will be developed to classify images of eardrums paired with text description of symptoms. Image classification
will be improved through data augmentation, and the custom Remmie.ai architecture built through transfer
learning of a publicly available training model. Unblinded labels will be compared to the algorithm readout as
blinded testing data are loaded into Remmie.ai to ensure convergence of accuracy and validation for
classification of acute OM versus normal eardrums. In Specific Aim 3, the Remmie.at platform, coupled with a
handheld “portable otoscope” for imaging patients’ eardrums and a user-friendly mobile device application, will
be tested by end-user physicians to derive feedback on the usability of the device and software. The outcome
will be a novel tool for both patients and caregivers to monitor otolaryngic diseases, specifically acute OM,
based on patient-provided images and symptoms, and diagnosis, aided by the proprietary Remmie.ai
algorithm.
项目摘要
中耳炎(OM)在三分之三生日之前就经历了六个孩子中的五分之一,而30-40%的孩子受苦
经常性感染,在美国导致每年1600万次发作。耳朵感染是产生的主要原因
6岁以下儿童的抗生素处方是第二大最常见的听力损失原因,并且可以
导致终身后遗症。诊断取决于面对面的诊所就诊和视觉检查
提供者给患者和看护人带来极大的不便,并为医疗体系带来了巨大的代价,
估计每年40亿美元。尽管大多数OM病例都在一周内解决,并且症状可能
通过非处方药管理,10-20%不需要额外的抗生素治疗或
极端情况下,鼓膜造口管插入以提供通风的中耳通风并有助于流体排水。
另一个复合因素是有限的访问Otrolyngologists以进行准确的诊断和感染
管理。远程医疗的扩展有可能通过快速,方便,以及
负担得起,但迄今为止,没有平台来支持和促进OM诊断的有效虚拟访问。
该阶段I建议的第一个具体目的是建立数千个的综合数据库
来自或不具有急性OM的患者的耳朵图像,并带有相关的临床诊断标签
特定目标2,训练一种新颖的定制机器学习算法,remmie.ai。卷积神经网络
将开发以对耳朵的图像进行分类,并与符号的文本描述配对。图像分类
将通过扩展和通过转移构建的自定义Remmie.AI架构来改进
学习公开培训模型。不盲目的标签将与算法读数进行比较
盲测数据被加载到remmie.ai中,以确保准确性和验证的收敛性
急性OM与正常耳朵的分类。在特定的AIM 3中,Remmie.AT平台,加上
用于成像患者耳环和用户友好的移动设备应用程序的手持式“便携式耳镜”将
由最终用户医生测试,以获取有关设备和软件的可用性的反馈。结果
对于患者和护理人员,将是监测耳鼻喉疾病,特别是急性OM的新工具
根据专有的Remmie.ai的帮助,基于患者提供的图像和症状以及诊断
算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Zhang其他文献
Jane Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别:
Identifying the Causes of the Stagnation in National U.S. Cardiovascular Disease Mortality
查明美国全国心血管疾病死亡率停滞不前的原因
- 批准号:
10585800 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别:
Organizational resilience: A novel strategy for improving ICU outcomes
组织弹性:改善 ICU 治疗结果的新策略
- 批准号:
10586383 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别:
A Translational Research Approach to Healthy Technology Usage in Language-Minority Families with Young Children
有幼儿的语言少数群体家庭健康技术使用的转化研究方法
- 批准号:
10822222 - 财政年份:2023
- 资助金额:
$ 34.99万 - 项目类别: