Enhanced auditory prosthesis using a penetrating auditory-nerve electrode
使用穿透性听觉神经电极的增强型听觉假体
基本信息
- 批准号:10599903
- 负责人:
- 金额:$ 32.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-11 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcoustic NerveAcoustic NeuromaAcuteAnesthesia proceduresAnimal ExperimentsAnimal ModelAnimalsApicalArtificial ImplantsAuditoryAuditory Brain Stem ImplantsAuditory Brainstem ResponsesAuditory ProsthesisBionicsBrain StemCadaverCell NucleusChronicClinical TrialsCochleaCochlear ImplantsCochlear NerveCochlear implant procedureComplexContralateralDevicesElectric StimulationElectrodesEmotionalEnvironmentExcisionExperimental DesignsFDA approvedFascicleFelis catusFiberFrequenciesFundingGrowthHealthHearingHearing problemHistologicHumanHuman VolunteersImpairmentImplantInferior ColliculusIridiumLanguageLengthMeasuresMetalsMonitorMusicNamesNerveNerve FibersNoiseOperative Surgical ProceduresPathway interactionsPatientsPenetrationPerformancePersonsPitch PerceptionResearchResectedRestaurantsSafetyScala TympaniSedation procedureSpeechStructureSystemTemporal bone structureTestingTranslatingTranslationsX-Ray Computed Tomographyauditory pathwayclinical applicationdeafexperimental studyfeasibility testinghearing impairmenthearing restorationimplantationimprovedlexicalnovelprogramsreconstructionsafety testingsoundsound frequencyspeech recognitionstandard of caretransmission processtumorvoice recognition
项目摘要
1. Project Summary. This project aims to improve hearing restoration for severely and profoundly deaf
people. The present-day standard of care for restoration of hearing is a cochlear implant (CI), consisting of 16-
22 metal electrodes inserted into the scala tympani of the cochlea. Most CI users can expect to achieve
reasonable speech reception in quiet environments. Performance is unsatisfactory, however, in everyday
complex auditory scenes containing background noise and competing talkers, as in restaurants and in busy
offices and classrooms. Also, CI users have only limited sensitivity to cycle-by-cycle temporal fine structure of
sounds, which underlies temporal pitch perception. The impaired pitch perception exacerbates the problems of
hearing in complex scenes, impairs voice recognition and sensitivity to the emotional content of speech, limits
music appreciation, and degrades understanding of Mandarin and other tonal languages. We have shown in
short-term studies in anesthetized cats that a penetrating intraneural (IN) electrode array inserted into the
cochlear nerve can overcome many limitations of a CI. In particular, an IN electrode can selectively activate
low-frequency cochlear and brainstem pathways that are specialized for transmission of temporal fine
structure information. We now wish to translate IN stimulation to human trials. Specifically, we propose to test
the feasibility of an implanted prosthesis; our working name for the device is “CI+1”. The CI+1 consists of 15
channels of a 16-channel Advanced Bionics CI combined with a single-channel iridium electrode that will
penetrate the cochlear nerve to target low-frequency cochlear nerve fibers. The iridium electrode is equivalent
to one shank of the 8-10 shank penetrating auditory brainstem implant that has been used in FDA-approved
clinical trials. Specific Aim 1 is to test the safety and efficacy of 6-month implantations of the CI+ 1 in cats, with
daily stimulation. We will measure the electrically evoked auditory brainstem response (eABR) at 2-wk
intervals to track any changes in stimulation threshold. Then, in a terminal experiment involving recordings
along the tonotopic axis of the inferior colliculus, we will assess spread of excitation and transmission of
temporal information by the intrascalar and IN electrodes. Specific Aim 2 is to evaluate short-term IN
stimulation in human patients who are undergoing surgery to resect vestibular schwannomas. Specific Aim 3 is
to evaluate optimal surgical approaches for CI+1 implantation using studies of cadaveric human temporal
bones. Early in the 5th year of funding, we aim to have completed the necessary background studies and to
apply for an investigational device exemption from the FDA that will permit translation of the CI+1 to the first
human trials. We anticipate that the CI+1 will offer the first human volunteers essentially all the benefits of a
conventional CI plus enhanced sensitivity to low-frequency sounds and enhanced pitch perception. In clinical
applications, the CI+1 might initially be favored for certain applications, but in principle the device would be a
preferred alternative for nearly every candidate for cochlear implantation.
1。项目摘要。该项目旨在改善听力恢复,以严重和深刻的聋哑
人们。当今的听力恢复护理标准是人工耳蜗(CI),由16--组成
22个金属电极插入了耳蜗的鳞片中。大多数CI用户可以期望实现
在安静的环境中合理的语音接收。但是,每天的性能并不令人满意
复杂的听觉场景包含背景噪音和竞争性说话者,例如在餐馆和忙碌中
办公室和教室。此外,CI使用者对逐行的临时临时良好结构的敏感性有限
声音是临时音调感知的基础。俯仰感知受损会加剧
在复杂的场景中听到,会损害语音识别和对语音情感内容的敏感性,限制
音乐欣赏,并降低对普通话和其他音调语言的理解。我们显示了
在麻醉猫中的短期研究,插入插入
耳蜗神经可以克服CI的许多局限性。特别是,电极可以选择性地激活
低频耳蜗和脑干途径,专门用于传播临时罚款
结构信息。我们现在希望将刺激转化为人类试验。具体来说,我们建议测试
植入假体的可行性;我们对设备的工作名称是“ CI+1”。 CI+1由15组成
16通道高级仿生学CI的通道与单通道虹膜电极相结合
穿透人工耳神经,以靶向低频耳蜗神经纤维。虹膜电极等效
在FDA批准的8-10柄穿透听觉脑干植入物中
临床试验。具体目的1是测试CI+ 1在猫中的6个月植入的安全性和效率,其中
每日刺激。我们将测量2周的电子诱发的听觉脑干响应(EABR)
跟踪刺激阈值的任何变化的间隔。然后,在涉及录音的终端实验中
沿着下丘的吨位轴,我们将评估兴奋和传播的传播
临时信息由内侧和电极中的临时信息。具体目标2是评估短期的
正在接受手术的人类患者的刺激,以恢复前庭造型瘤。具体目标3是
使用尸体人类临时研究评估CI+1植入的最佳手术方法
骨头。在资金的第五年初,我们的目标是完成必要的背景研究和
申请允许FDA的投资设备豁免,该设备将允许将CI+1转换为第一个
人类试验。我们预计CI+1将为第一批人类志愿者提供本质上的所有好处
常规的CI加上对低频声音和增强音高感知的敏感性增强。在临床上
应用程序,CI+1最初可能是某些应用程序的优选,但原则上,设备将是一个
对于几乎每个人工耳蜗植入的候选者来说,首选替代方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harrison William Lin其他文献
Harrison William Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harrison William Lin', 18)}}的其他基金
Enhanced auditory prosthesis using a penetrating auditory-nerve electrode
使用穿透性听觉神经电极的增强型听觉假体
- 批准号:
10375480 - 财政年份:2019
- 资助金额:
$ 32.83万 - 项目类别:
Enhanced auditory prosthesis using a penetrating auditory-nerve electrode
使用穿透性听觉神经电极的增强型听觉假体
- 批准号:
9913505 - 财政年份:2019
- 资助金额:
$ 32.83万 - 项目类别:
相似国自然基金
三维光声-光学全偏振成像及脑神经纤维构型的高分辨显微研究
- 批准号:62335007
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
三维PEDOT:PSS-胶原水凝胶联合声电刺激促进神经干细胞再生和分化
- 批准号:82371155
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
40Hz光声刺激Gamma神经振荡夹带技术干预认知障碍的探索性研究
- 批准号:82371906
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于神经网络和能量流的壁板高频热气动弹性声振特性研究
- 批准号:12302228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Intraoperative Identification of Cranial Nerves in Skull Base Surgery Using Polarization Sensitive Optical Coherence Tomography
使用偏振敏感光学相干断层扫描术中识别颅底手术中的脑神经
- 批准号:
10662675 - 财政年份:2023
- 资助金额:
$ 32.83万 - 项目类别:
Engineering protease biomarkers to guide surgical therapy for vestibular schwannoma and Neurofibromatosis Type 2
工程蛋白酶生物标志物指导前庭神经鞘瘤和 2 型神经纤维瘤病的手术治疗
- 批准号:
10571125 - 财政年份:2023
- 资助金额:
$ 32.83万 - 项目类别:
Label-free, Multimodality Diffuse Reflectance and Polarization-Based Proximity Probe for Iatrogenic Nerve Injury Prevention During Surgical Procedures
基于无标记、多模态漫反射和偏振的接近探头,用于预防手术过程中的医源性神经损伤
- 批准号:
10491034 - 财政年份:2022
- 资助金额:
$ 32.83万 - 项目类别:
Nerve-specific Fluorophores for Improved Nerve Sparing during Prostatectomy using the Clinical Fluorescence Guided Surgery Infrastructure
使用临床荧光引导手术基础设施,神经特异性荧光团可改善前列腺切除术期间的神经保护
- 批准号:
10540590 - 财政年份:2021
- 资助金额:
$ 32.83万 - 项目类别:
Real-time Multimodal Diffuse Reflectance and Polarization Imaging Based Nerve Identification in Surgical Field of View
基于实时多模态漫反射和偏振成像的手术视场神经识别
- 批准号:
10158278 - 财政年份:2020
- 资助金额:
$ 32.83万 - 项目类别: